def main(): parser = argparse.ArgumentParser() parser.add_argument("inputList", #nargs="?" , help=("Training sample list."), #default=config.defaultTrainSampleList ) parser.add_argument("outputDir", nargs="?" , help="Music output directory", default = config.defaultOutputDir ) #parser.add_argument("modelName", nargs="?" , # help="model filename", # default=config.defaultModelFilename # ) args = parser.parse_args() trainSampList = sampleLoader.parseFileList(args.inputList) trainFeatsList = [] for trainSampFilename in trainSampList: trainSamp = sampleLoader.loadTrainSample(trainSampFilename) trainFeat = featureManager.extractTrainFeat(trainSamp) trainFeatsList.append(trainFeat) trainFeatFilename = config.getTrainInFeatFilename(args) featureManager.saveJson(trainFeatsList, trainFeatFilename); m = model.getModelObj(); #modelName = config.getModelFilename(args) m.train(args); #load features from config.getTrainInFeatFilename(args)
def main(): parser = argparse.ArgumentParser() parser.add_argument("input", #nargs="1" , help="Score to be played, without extension.", #default=config.defaultGenScore ) parser.add_argument("modelFilename", #nargs="1" , help="Model filename", #default=config.defaultModelFilename ) parser.add_argument("outputDir", nargs="?" , help="Music output directory", default = config.defaultOutputDir ) args = parser.parse_args() genScore = sampleLoader.loadGenScore(args.input) genFeat = featureManager.extractGenFeat(genScore) #wrap genFeat by {} because trainFeats is {score1, score2} featureManager.saveJson([genFeat], config.getGenInFeatFilename(args)) #perfFeats = model.genPerfFeats(config.defaultGenFeatFilename, args.modelFilename) m = model.getModelObj() perfFeats = m.gen(args) #wrap perfFeat by {} because trainFeats is {score1, score2} featureManager.saveJson([perfFeats], config.getGenOutFeatFilename(args)) musicGenerator.genMusic(genScore, args)
def main(): parser = argparse.ArgumentParser() parser.add_argument( "inputList", #nargs="?" , help=("Training sample list."), #default=config.defaultTrainSampleList ) parser.add_argument("outputDir", nargs="?", help="Music output directory", default=config.defaultOutputDir) #parser.add_argument("modelName", nargs="?" , # help="model filename", # default=config.defaultModelFilename # ) args = parser.parse_args() trainSampList = sampleLoader.parseFileList(args.inputList) trainFeatsList = [] for trainSampFilename in trainSampList: trainSamp = sampleLoader.loadTrainSample(trainSampFilename) trainFeat = featureManager.extractTrainFeat(trainSamp) trainFeatsList.append(trainFeat) trainFeatFilename = config.getTrainInFeatFilename(args) featureManager.saveJson(trainFeatsList, trainFeatFilename) m = model.getModelObj() #modelName = config.getModelFilename(args) m.train(args)