def get_score_mat():
    project_name = "totinfo"
    version = "v13"
    feature_obj = feature_computer.get_feature_vecs(project_name,
                                                    version)
    score_mat = pd.DataFrame()
    x_axis = list(np.arange(1.0, 0.0, -0.05))
    for cutoff in x_axis:
        ranker_obj = tarantula.TarantulaRanker()
        filter_obj = spectra_filter.SingleFailingDistanceFilter(
            feature_obj,
            "inv_common_execd_over_passing",
            cutoff)
        provider = run_result_provider.SingleFailingProvider()

        results = evaluator.get_ranker_results_with_objs(project_name,
                                                         version,
                                                         ranker_obj,
                                                         filter_obj,
                                                         provider)

        scores = pd.Series({ver:rank_res.score if rank_res else 0.0
                            for ver,rank_res
                            in results.items()})
        assert scores.max() <= 1.0
        score_mat[cutoff] = scores

    return score_mat.transpose()
Пример #2
0
def get_filter(project_name, version, filter_type):
    if filter_type == "none":
        return spectra_filter.TrivialFilter()

    feature_obj = feature_computer.get_feature_vecs(project_name,
                                                    version)
    if filter_type == "heuristic":
        return spectra_filter.HeuristicFilter(feature_obj)
    elif filter_type == "direct_cutoff":
        return spectra_filter.SingleFailingDistanceFilter(
            feature_obj,
            'inv_common_execd_over_passing',
            0.15)
    elif filter_type == "topn":
        return spectra_filter.SingleFailingDistanceFilterTopNPercent(
            feature_obj,
            'normalized_hamming',
            0.3)

    raise RuntimeError("Unkown filter {0}".format(filter_type))
Пример #3
0
def evaluation_fn(project_name, initial_scores,
                  classify_vector, cutoff):
    print("Evaluating with cutoff {0} classify {1}".format(cutoff,
                                                           classify_vector))
    scoresum = 0
    ver = None
    for version in projects.get_version_names(project_name):
        features = feature_computer.get_feature_vecs(project_name, version)
        filter_obj = spectra_filter.DotProductFilter(classify_vector,
                                                     cutoff,
                                                     features)

        ranker_obj = tarantula.TarantulaRanker()
        rank_res = get_res(project_name, version, ranker_obj, filter_obj)

        if rank_res is None:
            continue

        score = rank_res.score
        scorediff = score - initial_scores[version]
        scoresum += scorediff

    print("Score is {0} for version: {1}".format(scoresum, ver))
    return scoresum