Пример #1
0
 def __init__(self,
              vectorizer='tfidf',
              num_leaves=23,
              learning_rate=0.01,
              max_depth=-1,
              num_boost_round=99999):
     self.vectorizer = feature_extraction.get(vectorizer)
     self.classifier = self.build_classifier(num_leaves, learning_rate,
                                             max_depth, num_boost_round)
    def __init__(self, question_encoder_shape=64, text_encoder_shape=64, learning_rate=0.001):
        self.vectorizer = feature_extraction.get('word2vec')
        self.num_features = config.WORD_VECTOR_DIM
        self.question_encoder_shape = question_encoder_shape
        self.text_encoder_shape = text_encoder_shape
        # Tensorflow currently does not support Tensors with different lengths along a dimension.
        self.batch_size = 1
        self.learning_rate = learning_rate

        self.classifier = self.build_classifier()
Пример #3
0
 def __init__(self, vectorizer='tfidf', kernel='rbf', degree=3):
     self.vectorizer = feature_extraction.get(vectorizer)
     self.classifier = self.build_classifier(kernel, degree)
Пример #4
0
 def __init__(self, vectorizer='tfidf'):
     self.vectorizer = feature_extraction.get(vectorizer)
     self.classifier = self.build_classifier()
Пример #5
0
 def __init__(self, vectorizer='tfidf', n_neighbors=3):
     self.vectorizer = feature_extraction.get(vectorizer)
     self.classifier = self.build_classifier(n_neighbors)
Пример #6
0
 def __init__(self, vectorizer='tfidf', max_depth=66, random_state=1):
     self.vectorizer = feature_extraction.get(vectorizer)
     self.classifier = self.build_classifier(max_depth, random_state)
Пример #7
0
 def __init__(self, vectorizer='tfidf', random_state=None):
     self.vectorizer = feature_extraction.get(vectorizer)
     self.classifier = self.build_classifier(random_state)
Пример #8
0
 def __init__(self, vectorizer='tfidf', max_depth=8, tree_method='auto'):
     self.vectorizer = feature_extraction.get(vectorizer)
     self.classifier = self.build_classifier(max_depth, tree_method)
Пример #9
0
 def __init__(self, embedding_dim=64, batch_size=32):
     self.vectorizer = feature_extraction.get('label_encoder')
     self.embedding_dim = embedding_dim
     self.batch_size = batch_size
     self.classifier = self.build_classifier()