Пример #1
0
def test_two_kinds_of_dependents(es):
    v = Feature(es['log']['value'])
    product = Feature(es['log']['product_id'])
    agg = Sum(v, es['customers'], where=product == 'coke zero')
    p = Percentile(agg)
    g = Absolute(agg)
    agg2 = Sum(v, es['sessions'], where=product == 'coke zero')
    # Adding this feature in tests line 218 in pandas_backend
    # where we remove columns in result_frame that already exist
    # in the output entity_frames in preparation for pd.concat
    # In a prior version, this failed because we changed the result_frame
    # variable itself, rather than making a new variable _result_frame.
    # When len(output_frames) > 1, the second iteration won't have
    # all the necessary columns because they were removed in the first
    agg3 = Sum(agg2, es['customers'])
    pandas_backend = PandasBackend(es, [p, g, agg3])
    df = pandas_backend.calculate_all_features([0, 1], None)
    assert df[p.get_name()].tolist() == [0.5, 1.0]
    assert df[g.get_name()].tolist() == [15, 26]
def test_two_kinds_of_dependents(es):
    v = Feature(es['log']['value'])
    product = Feature(es['log']['product_id'])
    agg = Sum(v, es['customers'], where=product == 'coke zero')
    p = Percentile(agg)
    g = Absolute(agg)
    agg2 = Sum(v, es['sessions'], where=product == 'coke zero')
    # Adding this feature in tests line 218 in pandas_backend
    # where we remove columns in result_frame that already exist
    # in the output entity_frames in preparation for pd.concat
    # In a prior version, this failed because we changed the result_frame
    # variable itself, rather than making a new variable _result_frame.
    # When len(output_frames) > 1, the second iteration won't have
    # all the necessary columns because they were removed in the first
    agg3 = Sum(agg2, es['customers'])
    pandas_backend = PandasBackend(es, [p, g, agg3])
    df = pandas_backend.calculate_all_features([0, 1], None)
    assert df[p.get_name()].tolist() == [2. / 3, 1.0]
    assert df[g.get_name()].tolist() == [15, 26]
Пример #3
0
 def __abs__(self):
     from featuretools.primitives import Absolute
     return Absolute(self)