in_file = "data/wikitestko_from_table_not_h_4.jsonl" out_file = f"output/test_out_ko_from_table_not_h_4_beam-{args.beam_size}_top-{args.topk}.jsonl" label_file = "WikiSQL/data/test.jsonl" db_file = "WikiSQL/data/test.db" model_out_file = f"output/test_model_out_ko_from_table_not_h_4_beam-{args.beam_size}_top-{args.topk}.pkl" ###================================================================================================### # All Best model_path = "output/20210505_235209" epoch = 4 engine = DBEngine(db_file) config = utils.read_conf(os.path.join(model_path, "model.conf")) # config["DEBUG"] = 1 featurizer = HydraFeaturizer(config) pred_data = SQLDataset(in_file, config, featurizer, False) print("num of samples: {0}".format(len(pred_data.input_features))) ##======================EG + TOP_k=============================## model = create_model(config, is_train=False) model.load(model_path, epoch) if "DEBUG" in config: model_out_file = model_out_file + ".partial" if os.path.exists(model_out_file): model_outputs = pickle.load(open(model_out_file, "rb")) else: model_outputs = model.dataset_inference(pred_data)
if not os.path.exists(model_path): os.mkdir(model_path) shutil.copyfile(conf_path, os.path.join(model_path, "model.conf")) for pyfile in ["featurizer.py"]: shutil.copyfile(pyfile, os.path.join(model_path, pyfile)) if config["model_type"] == "pytorch": shutil.copyfile("modeling/torch_model.py", os.path.join(model_path, "torch_model.py")) elif config["model_type"] == "tf": shutil.copyfile("modeling/tf_model.py", os.path.join(model_path, "tf_model.py")) else: raise Exception("model_type is not supported") featurizer = HydraFeaturizer(config) model = create_model(config, is_train=True) evaluator = HydraEvaluator(model_path, config, featurizer, model, note) is_meta = "meta_train" in config.keys() and config["meta_train"] == "True" if "use_content" in config.keys() and config["use_content"] == "True": processed_data_path = config["train_data_path"] +\ "_{}_{}_{}".format( config["base_class"], config["base_name"], "filtered" if "filter_content" in config.keys() and config["filter_content"] == "True" else "unfilt" ) else: processed_data_path = config["train_data_path"] +\ "_{}_{}".format(config["base_class"], config["base_name"]) if is_meta:
def execute_one_test(dataset, shot, model_moment, epoch): os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3" model_path = "output/" + model_moment in_file = "data/wiki{}_content.jsonl".format( dataset) if shot == "orig" else "data/wiki{}_{}_content.jsonl".format( dataset, shot) db_file = "WikiSQL/data/{}.db".format(dataset) label_file = "WikiSQL/data/{}.jsonl".format( dataset) if shot == "orig" else "WikiSQL/data_{}/{}.jsonl".format( shot, dataset) out_path = "predictions/{}_{}_{}_{}".format(model_moment, epoch, dataset, shot) if not os.path.exists(out_path): os.mkdir(out_path) out_file = os.path.join(out_path, "out.jsonl") eg_out_file = os.path.join(out_path, "out_eg.jsonl") model_out_file = os.path.join(out_path, "model_out.pkl") test_result_file = os.path.join(out_path, "result.txt") engine = DBEngine(db_file) config = utils.read_conf(os.path.join(model_path, "model.conf")) # config["DEBUG"] = 1 featurizer = HydraFeaturizer(config) pred_data = SQLDataset(in_file, config, featurizer, False) print("num of samples: {0}".format(len(pred_data.input_features))) model = create_model(config, is_train=False) model.load(model_path, epoch) if "DEBUG" in config: model_out_file = model_out_file + ".partial" model_outputs = model.dataset_inference(pred_data) pickle.dump(model_outputs, open(model_out_file, "wb")) # model_outputs = pickle.load(open(model_out_file, "rb")) print("===HydraNet===") pred_sqls = model.predict_SQL(pred_data, model_outputs=model_outputs) with open(out_file, "w") as g: for pred_sql in pred_sqls: # print(pred_sql) result = {"query": {}} result["query"]["agg"] = int(pred_sql[0]) result["query"]["sel"] = int(pred_sql[1]) result["query"]["conds"] = [(int(cond[0]), int(cond[1]), str(cond[2])) for cond in pred_sql[2]] g.write(json.dumps(result) + "\n") normal_res = print_metric(label_file, out_file, db_file) print("===HydraNet+EG===") pred_sqls = model.predict_SQL_with_EG(engine, pred_data, model_outputs=model_outputs) with open(eg_out_file, "w") as g: for pred_sql in pred_sqls: # print(pred_sql) result = {"query": {}} result["query"]["agg"] = int(pred_sql[0]) result["query"]["sel"] = int(pred_sql[1]) result["query"]["conds"] = [(int(cond[0]), int(cond[1]), str(cond[2])) for cond in pred_sql[2]] g.write(json.dumps(result) + "\n") eg_res = print_metric(label_file, eg_out_file, db_file) with open(test_result_file, "w") as g: g.write("normal results:\n" + normal_res + "eg results:\n" + eg_res)