Пример #1
0
def initialize_framework(default_config='default.yaml',
                         config_manager=config_manager,
                         **kwargs):
    """
    Reads default config if exists
    Args:
        config_data:

    Returns:

    """
    config_manager.register(MainConfig)

    if os.path.exists(default_config):
        config_manager.load_yaml(default_config, section=MainConfig._section)
        config_manager.update_config(main_config)
        register_modules(config_manager=config_manager)

        # set logging levels
        get_logger.set_level(main_config.log_level_console)
        get_logger.set_filehandler_level(main_config.log_level_file)

        if main_config.plotting_backend != None:
            import matplotlib.pyplot as plt
            plt.switch_backend(main_config.plotting_backend)

        # reload config, now that we have registered the modules.
        config_manager.load_yaml(default_config)
    else:
        logger.warning(f'Did not find default config ("{default_config}").')
Пример #2
0
def register_modules(config_manager):
    """
    Registers modules as given by MainConfig with the config_manager.
    Args:
        config_manager:

    """
    for m in main_config.modules:
        if isinstance(m, str):
            m = locate(m)
        config_manager.register(m)
        logger.info(f'Registered module "{m.__name__}".')
Пример #3
0
def main():
    """
    Main program entry point.
    """
    config_manager.register(MainConfig)

    parser = argparse.ArgumentParser(description='Bandit and Bayesian Optimization Experimental Framework.')
    parser.add_argument("task", type=parse_task)
    parser.add_argument("experiment", nargs='?')
    parser.add_argument("--save", help='Path where to save to.')
    parser.add_argument("--config", required=False, default=None)
    parser.add_argument("--include", required=False, default=None, type=str, nargs='+')
    parser.add_argument("--overwrite", required=False, action='store_true')
    parser.add_argument("--plots", required=False, help='Immediately plot after run.', nargs='*')
    parser.add_argument("--aggregator", required=False, help='Immediately plot after run.', nargs='*')
    parser.add_argument("--remote", required=False, action='store_true', help='Run remotely using ceramo.')
    parser.add_argument("-m", "--message", required=False, help='Message.')

    args = parser.parse_args()
    initialize_framework()

    args.task(args)
Пример #4
0
class TripathyGPConfig(ModelConfig):
    """
    * kernels: List of kernels
    * noise_var: noise variance

    """
    # kernels = ConfigField([('GPy.kern.RBF', {'variance': 2., 'lengthscale': 0.2 , 'ARD': True})])
    noise_var = ConfigField(0.01)
    calculate_gradients = ConfigField(False, comment='Enable/Disable computation of gradient on each update.')
    optimize_bias = ConfigField(False)
    optimize_var = ConfigField(False)
    bias = ConfigField(0)
    _section = 'src.tripathy__'

config_manager.register(TripathyGPConfig)

from bacode.tripathy.src.bilionis_refactor.t_kernel import TripathyMaternKernel
from bacode.tripathy.src.bilionis_refactor.t_optimizer import TripathyOptimizer

@assign_config(TripathyGPConfig)
class TripathyGP(ConfidenceBoundModel):
    """
    Base class for GP optimization.
    Handles common functionality.

    """

    def set_new_kernel(self, d, W=None, variance=None, lengthscale=None):
        self.kernel = TripathyMaternKernel(
            real_dim=self.domain.d,
Пример #5
0
    * kernels: List of kernels
    * noise_var: noise variance

    """
    # kernels = ConfigField([('GPy.kern.Matern32', {'variance': 1., 'lengthscale': 1.5, 'ARD': True})])
    noise_var = ConfigField(0.01)
    calculate_gradients = ConfigField(
        False,
        comment='Enable/Disable computation of gradient on each update.')
    optimize_bias = ConfigField(False)
    optimize_var = ConfigField(False)
    bias = ConfigField(0)
    _section = 'src.tripathy__'


config_manager.register(BoringGPConfig)

from bacode.tripathy.src.bilionis_refactor.t_kernel import TripathyMaternKernel
from GPy.kern import Matern32, RBF
from bacode.tripathy.src.bilionis_refactor.t_optimizer import TripathyOptimizer


@assign_config(BoringGPConfig)
class BoringGP(ConfidenceBoundModel):
    """
    Base class for GP optimization.
    Handles common functionality.

    """
    def create_new_kernel(self,
                          active_d,
    """
    * kernels: List of kernels
    * noise_var: noise variance

    """
    # kernels = ConfigField([('GPy.kern.RBF', {'variance': 2., 'lengthscale': 0.2 , 'ARD': True})])
    noise_var = ConfigField(0.1)
    calculate_gradients = ConfigField(
        True, comment='Enable/Disable computation of gradient on each update.')
    optimize_bias = ConfigField(False)
    optimize_var = ConfigField(False)
    bias = ConfigField(0)
    _section = 'src.tripathy__'


config_manager.register(ClassicalActiveSubspaceGPConfig)

# def optimize_gp(experiment):
#     experiment.algorithm.f.gp.kern.variance.fix()
#     experiment.algorithm.f.gp.optimize()
#     print(experiment.algorithm.f.gp)

from .t_kernel import TripathyMaternKernel
from .t_optimizer import TripathyOptimizer


@assign_config(ClassicalActiveSubspaceGPConfig)
class ClassicalActiveSubspaceGP(ConfidenceBoundModel):
    """
    Base class for GP optimization.
    Handles common functionality.
Пример #7
0
def register_modules(modules):
    for m in modules:
        if isinstance(m, str):
            m = locate(m)
        config_manager.register(m)
        logger.info(f'Registered module "{m.__name__}".')
Пример #8
0
from bacode.tripathy.src.rembo.utils import sample_orthogonal_matrix

import numpy as np
from febo.algorithms import Algorithm, AlgorithmConfig
from febo.environment import ContinuousDomain
from febo.models import GP
from febo.optimizers import ScipyOptimizer
from febo.utils.config import ConfigField, config_manager, assign_config


class RemboConfig(AlgorithmConfig):
    dim = ConfigField(2, comment='subspace dimension')


config_manager.register(RemboConfig)


def normalize(x, domain):
    """
        Normalize value of x from the range of the domain, to [-1, 1]^d
    :param x:
    :param center:
    :param range:
    :return:
    """
    # assert x.shape == center.shape, ("Center and x don't have the same shape ", x.shape, center.shape)
    # assert domainrange.shape == center.shape, ("Center and range don't have the same shape ", center.shape, domainrange.shape)
    return (domain.normalize(x) - 0.5) * 2.
    # return np.divide(x - center, domainrange)
Пример #9
0
    * kernels: List of kernels
    * noise_var: noise variance

    """
    # kernels = ConfigField([('GPy.kern.RBF', {'variance': 2., 'lengthscale': 0.2 , 'ARD': True})])
    noise_var = ConfigField(0.01)
    calculate_gradients = ConfigField(
        False,
        comment='Enable/Disable computation of gradient on each update.')
    optimize_bias = ConfigField(False)
    optimize_var = ConfigField(False)
    bias = ConfigField(0)
    _section = 'src.boring.boring_model'


config_manager.register(BoringModelConfig)

# def optimize_gp(experiment):
#     experiment.algorithm.f.gp.kern.variance.fix()
#     experiment.algorithm.f.gp.optimize()
#     print(experiment.algorithm.f.gp)

from bacode.tripathy.src.bilionis_refactor.t_kernel import TripathyMaternKernel
from bacode.tripathy.src.bilionis_refactor.t_optimizer import TripathyOptimizer
from bacode.tripathy.src.boring.generate_orthogonal_basis import generate_orthogonal_matrix_to_A


@assign_config(BoringModelConfig)
class BoringGP(ConfidenceBoundModel):
    """
    Base class for GP optimization.