Пример #1
0
def creditprof():
    '''Credit profile derived from mortgage and corporate credit spreads.'''
    #  Derivation in fecon235/nb/fred-credit-spreads.ipynb
    #  See https://git.io/creditprof
    #  First, note the oldest start date common among all series herein:
    start = '1991-08-30'
    #  ----- MORTGAGE CREDIT SPREAD
    #  Freddie Mac 15-Year Fixed Rate Mortgage v. Treasury 10-year bond.
    #  Freddie Mac series is updated weekly on Thursdays,
    #  so we apply daily interpolation to be
    #  frequency compatible with the other series in this function:
    fmac = daily(get('MORTGAGE15US'))
    #  Retrieve daily rates for 10-year Treasuries...
    ty = get(d4bond10)
    #  ... then compute the mortgage spread:
    mort = todf(fmac - ty)
    #  Profile the mortgage credit spread:
    mortmad = madmen(mort)
    #  ----- CORPORATE BOND SPREAD
    #  Examine daily BAA10Y spread between Moody's Seasoned Baa-rated
    #  Corporate Bonds and 10-year Treasury Constant Maturity:
    baa = get('BAA10Y')
    #  Profile the corporate credit spread:
    baamad = madmen(baa[start:])
    #  ----- UNIFIED PROFILE for generality,
    #  take the mean of all profiles:
    return todf((mortmad + baamad) / 2)
Пример #2
0
def foreinfl(n=120, alpha=1.0, beta=0.3673):
    '''Forecast Unified Inflation 1-year ahead per https://git.io/infl
       which a rendering of fecon235/nb/fred-inflation.ipynb.
       SUMMARY output: [Average, "infl-date", GMR, HW, BEI]
       e.g.  [2.2528, '2018-01-01', 1.5793, 3.0791, 2.1000]
       where Average is the mean of three orthogonal methods:
       GMR for geometric mean rate, HW for Holt-Winters time-series,
       and BEI for Break-even Inflation from the Treasury bond market.
       Default n denotes 120-month history, i.e. last 10 years.
    '''
    #  Holt-Winters parameters alpha and beta are optimized
    #  from the 1960-2018 dataset, consisting of 697 monthly points.
    #  Each "way" is an orthogonal method, to be averaged into way[0].
    way = [-9, -9, -9, -9, -9]  # dummy placeholders.
    inflall = get(m4infl)       # synthetic Unified Inflation, monthly.
    infl = tail(inflall, n)
    way[1] = str(infl.index[-1]).replace(" 00:00:00", "")
    #                ^Most recent month for CPI, CPIc, PCE, PCEc data.
    gm = gemrat(infl, yearly=12)
    way[2] = gm[0]   # Geometric Mean Rate over n months.
    hw = foreholt(infl, 12, alpha, beta)  # Holt-Winters model.
    way[3] = (tailvalue(hw) - 1) * 100    # Convert forecasted level to rate.
    bond10 = get(m4bond10)
    tips10 = get(m4tips10)
    bei = todf(bond10 - tips10)           # 10-year BEI Break-even Inflation.
    #         ^Treasury bond market data will be much more recent than m4infl.
    way[4] = tailvalue(bei)
    #  Final forecast is the AVERAGE of three orthogonal methods:
    way[0] = sum(way[2:]) / len(way[2:])
    return way
Пример #3
0
def forefunds(nearby='16m', distant='17m'):
    '''Forecast distant Fed Funds rate using Eurodollar futures.'''
    #  Derivation in fecon235/nb/qdl-libor-fed-funds.ipynb
    #  See https://git.io/fedfunds
    ffer = get('DFF')
    #      ^Retrieve Fed Funds effective rate, daily since 1954.
    ffer_ema = ema(ffer['1981':], 0.0645)
    #                    ^Eurodollar futures debut.
    #          ^Exponentially Weighted Moving Average, 30-period.
    libor_nearby = get('f4libor' + nearby)
    libor_distant = get('f4libor' + distant)
    libor_spread = todf(libor_nearby - libor_distant)
    #     spread in forward style quote since futures uses 100-rate.
    return todf(ffer_ema + libor_spread)
Пример #4
0
def test_group_fecon236_GET_w4cotr_metals_from_QUANDL_vSlow_oLocal():
    '''Test get() which uses getqdl() in qdl module.
       Here we get the CFTC Commitment of Traders Reports
       for gold and silver expressed as our position indicator.
    >>> print(qdl.w4cotr_metals)
    w4cotr_metals
    '''
    metals = get(qdl.w4cotr_metals)
    assert round(tool.tailvalue(metals[:'2015-07-28']), 3) == 0.461
Пример #5
0
def foreholt(data, h=12, alpha=hw_alpha, beta=hw_beta, maxi=0):
    '''Data slang aware Holt-Winters holtforecast(), h-periods ahead.
       Thus "data" can be a fredcode, quandlcode, stock slang,
       OR a DataFrame should be detected.
    '''
    if not isinstance(data, pd.DataFrame):
        try:
            data = get(data, maxi)
        except Exception:
            raise ValueError("INVALID data argument.")
    holtdf = holt(data, alpha, beta)
    return holtforecast(holtdf, h)
Пример #6
0
def groupget(ggdic=group4d, maxi=0):
    '''Retrieve and create group dataframe, given group dictionary.'''
    #  Since dictionaries are unordered, create SORTED list of keys:
    keys = [key for key in sorted(ggdic)]
    #  Download individual dataframes as values into a dictionary:
    dfdic = {key: get(ggdic[key], maxi) for key in keys}
    #           ^Illustrates dictionary comprehension.
    #  Paste together dataframes into one large sorted dataframe:
    groupdf = tool.paste([dfdic[key] for key in keys])
    #  Name the columns:
    groupdf.columns = keys
    return groupdf
Пример #7
0
def forecast(data, h=12, grids=0, maxi=0):
    '''h-period ahead forecasts by holtforecast or optimize_holtforecast,
       where "data" may be fredcode, quandlcode, stock slang, or DataFrame.
       Given default grids argument, forecast is very QUICK since we use
       FIXED parameters implicitly: alpha=hw_alpha and beta=hw_beta.
       Recommend grids=50 for reasonable results, but it is TIME-CONSUMING
       for search grids > 49 to find OPTIMAL alpha and beta.
    '''
    if not isinstance(data, pd.DataFrame):
        try:
            data = get(data, maxi)
            #          ^Expecting fredcode, quandlcode, or stock slang.
        except Exception:
            raise ValueError("INVALID data argument.")
    if grids > 0:
        opt = optimize_holtforecast(data, h, grids=grids)
        system.warn(str(opt[1]), stub="OPTIMAL alpha, beta, losspc, loss:")
        return opt[0]
    else:
        holtdf = holt(data)
        system.warn("Holt-Winters parameters have NOT been optimized.")
        return holtforecast(holtdf, h)
Пример #8
0
def test_group_fecon236_GET_d7xbtusd_from_QUANDL_vSlow_oLocal():
    '''Test get() which uses getqdl() in qdl module.
       Here we get a Bitcoin price from Quandl.
    '''
    xbt = get(qdl.d7xbtusd)
    assert tool.tailvalue(xbt[:'2018-06-14']) == 6315.7