Пример #1
0
    def setUp(self):
        self.feature_histogram = FeatureHistogram()
        session.init("test_feature_histogram")
        data_insts = []
        for i in range(1000):
            indices = []
            data = []
            for j in range(10):
                x = random.randint(0, 5)
                if x != 0:
                    data.append(x)
                    indices.append(j)
            sparse_vec = SparseVector(indices, data, shape=10)
            data_insts.append(
                (Instance(features=sparse_vec), (1, random.randint(0, 3))))
        self.node_map = {0: 0, 1: 1, 2: 2, 3: 3}
        self.data_insts = data_insts
        self.data_bin = session.parallelize(data_insts,
                                            include_key=False,
                                            partition=16)

        self.grad_and_hess_list = [(random.random(), random.random())
                                   for i in range(1000)]
        self.grad_and_hess = session.parallelize(self.grad_and_hess_list,
                                                 include_key=False,
                                                 partition=16)

        bin_split_points = []
        for i in range(10):
            bin_split_points.append(np.array([i for i in range(6)]))
        self.bin_split_points = np.array(bin_split_points)
        self.bin_sparse = [0 for i in range(10)]
Пример #2
0
    def get_left_node_local_histogram(self, cur_nodes: List[Node],
                                      tree: List[Node], g_h, table_with_assign,
                                      split_points, sparse_point,
                                      valid_feature):

        node_map = self.get_node_map(cur_nodes, left_node_only=True)

        LOGGER.info("start to get node histograms")
        histograms = FeatureHistogram.calculate_histogram(
            table_with_assign, g_h, split_points, sparse_point, valid_feature,
            node_map, self.use_missing, self.zero_as_missing)

        hist_bags = []
        for hist_list in histograms:
            hist_bags.append(HistogramBag(hist_list))

        left_nodes = []
        for node in cur_nodes:
            if node.is_left_node or node.id == 0:
                left_nodes.append(node)

        # set histogram id and parent histogram id
        for node, hist_bag in zip(left_nodes, hist_bags):
            # LOGGER.debug('node id {}, node parent id {}, cur tree {}'.format(node.id, node.parent_nodeid, len(tree)))
            hist_bag.hid = node.id
            hist_bag.p_hid = node.parent_nodeid

        return hist_bags
Пример #3
0
    def get_local_histogram(self, cur_to_split: List[Node], g_h,
                            table_with_assign, split_points, sparse_point,
                            valid_feature):

        LOGGER.info("start to get node histograms")
        node_map = self.get_node_map(nodes=cur_to_split)
        histograms = FeatureHistogram.calculate_histogram(
            table_with_assign, g_h, split_points, sparse_point, valid_feature,
            node_map, self.use_missing, self.zero_as_missing)

        hist_bags = []
        for hist_list in histograms:
            hist_bags.append(HistogramBag(hist_list))

        return hist_bags
Пример #4
0
class TestFeatureHistogram(unittest.TestCase):
    def setUp(self):
        self.feature_histogram = FeatureHistogram()
        session.init("test_feature_histogram")
        data_insts = []
        for i in range(1000):
            indices = []
            data = []
            for j in range(10):
                x = random.randint(0, 5)
                if x != 0:
                    data.append(x)
                    indices.append(j)
            sparse_vec = SparseVector(indices, data, shape=10)
            data_insts.append(
                (Instance(features=sparse_vec), (1, random.randint(0, 3))))
        self.node_map = {0: 0, 1: 1, 2: 2, 3: 3}
        self.data_insts = data_insts
        self.data_bin = session.parallelize(data_insts,
                                            include_key=False,
                                            partition=16)

        self.grad_and_hess_list = [(random.random(), random.random())
                                   for i in range(1000)]
        self.grad_and_hess = session.parallelize(self.grad_and_hess_list,
                                                 include_key=False,
                                                 partition=16)

        bin_split_points = []
        for i in range(10):
            bin_split_points.append(np.array([i for i in range(6)]))
        self.bin_split_points = np.array(bin_split_points)
        self.bin_sparse = [0 for i in range(10)]

    def test_accumulate_histogram(self):
        data = [[[[random.randint(0, 10) for i in range(2)] for j in range(3)]
                 for k in range(4)] for r in range(5)]
        histograms = copy.deepcopy(data)
        for i in range(len(data)):
            for j in range(len(data[i])):
                histograms[i][
                    j] = self.feature_histogram._tensor_histogram_cumsum(
                        histograms[i][j])
                for k in range(1, len(data[i][j])):
                    for r in range(len(data[i][j][k])):
                        data[i][j][k][r] += data[i][j][k - 1][r]
                        self.assertTrue(
                            data[i][j][k][r] == histograms[i][j][k][r])

    def test_calculate_histogram(self):
        histograms = self.feature_histogram.calculate_histogram(
            self.data_bin,
            self.grad_and_hess,
            self.bin_split_points,
            self.bin_sparse,
            node_map=self.node_map)

        his2 = [[[[0 for i in range(3)] for j in range(6)] for k in range(10)]
                for r in range(4)]
        for i in range(1000):
            grad, hess = self.grad_and_hess_list[i]
            id = self.node_map[self.data_insts[i][1][1]]
            for fid, bid in self.data_insts[i][0].features.get_all_data():
                his2[id][fid][bid][0] += grad
                his2[id][fid][bid][1] += hess
                his2[id][fid][bid][2] += 1

        for i in range(len(his2)):
            for j in range(len(his2[i])):
                his2[i][j] = self.feature_histogram._tensor_histogram_cumsum(
                    his2[i][j])
                for k in range(len(his2[i][j])):
                    for r in range(len(his2[i][j][k])):
                        self.assertTrue(
                            np.fabs(his2[i][j][k][r] - histograms[i][j][k][r])
                            < consts.FLOAT_ZERO)

    def test_aggregate_histogram(self):

        fake_fid = 114
        data1 = [[random.randint(0, 10) for i in range(2)] for j in range(3)]

        data2 = [[random.randint(0, 10) for i in range(2)] for j in range(3)]

        fid, agg_histograms = self.feature_histogram._hist_aggregate(
            (fake_fid, data1), (fake_fid, data2))

        for i in range(len(data1)):
            for j in range(len(data1[i])):
                data1[i][j] += data2[i][j]
                self.assertTrue(data1[i][j] == agg_histograms[i][j])

    def tearDown(self):
        session.stop()