Пример #1
0
 def run(self, original_model, train_data, validate_data, feature_mask):
     model = copy.deepcopy(original_model)
     current_flowid = self.get_flowid()
     model.set_flowid(current_flowid)
     if original_model.role != consts.ARBITER:
         curr_train_data = train_data.mapValues(
             lambda v: Step.slice_data_instance(v, feature_mask))
         new_schema = Step.get_new_schema(train_data, feature_mask)
         LOGGER.debug("new schema is: {}".format(new_schema))
         set_schema(curr_train_data, new_schema)
         model.header = new_schema.get("header")
     else:
         curr_train_data = train_data
     model.fit(curr_train_data)
     return model
Пример #2
0
 def _set_output_table_schema(data_inst, schema):
     if schema is not None and data_inst.count() > 0:
         data_io.set_schema(data_inst, schema)