recalls[label][median], label='%s vs rest' % genre_list[label])
            plot_roc(roc_scores[label][median], desc, tprs[label][median],
                     fprs[label][median], label='%s vs rest' % genre_list[label])

    all_pr_scores = np.asarray(pr_scores.values()).flatten()
    summary = (np.mean(scores), np.std(scores),
               np.mean(all_pr_scores), np.std(all_pr_scores))
    print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary)

    return np.mean(train_errors), np.mean(test_errors), np.asarray(cms)


def create_model():
    from sklearn.linear_model.logistic import LogisticRegression
    clf = LogisticRegression()

    return clf


if __name__ == "__main__":
    X, y = read_fft(genre_list)

    train_avg, test_avg, cms = train_model(
        create_model, X, y, "Log Reg FFT", plot=True)

    cm_avg = np.mean(cms, axis=0)
    cm_norm = cm_avg / np.sum(cm_avg, axis=0)

    plot_confusion_matrix(cm_norm, genre_list, "fft",
                          "Confusion matrix of an FFT based classifier")
Пример #2
0
    summary = (np.mean(scores), np.std(scores), np.mean(all_pr_scores),
               np.std(all_pr_scores))
    print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary)

    return np.mean(train_errors), np.mean(test_errors), np.asarray(cms)


def create_model():
    from sklearn.linear_model.logistic import LogisticRegression
    clf = LogisticRegression()

    return clf


if __name__ == "__main__":
    X, y = read_fft(genre_list)

    train_avg, test_avg, cms = train_model(create_model,
                                           X,
                                           y,
                                           "Log Reg FFT",
                                           plot=True)

    cm_avg = np.mean(cms, axis=0)
    cm_norm = cm_avg / np.sum(cm_avg, axis=0)

    print(cm_norm)

    plot_confusion_matrix(cm_norm, genre_list, "fft",
                          "Confusion matrix of an FFT based classifier")
Пример #3
0
 def __init__(self):
     super(FFTSoundClassify, self).__init__()
     self._X, self._Y = read_fft(GENRE_LIST)