def __init__(self): ##CONST CODE AREA self.CLIPS_FILE_LOAD_FAILED_CODE = 404 self.CLIPS_FILE_LOAD_SUCCESS_CODE = 200 self.codetype = sys.getfilesystemencoding() ##GLOBAL_AREA self.file_pointers = 1 # sim.data file read position self.m_nCount = 0 self.data_file_name = TEMP_FILE_PREFIX + 'test_flight_facts.dat' self.clips_dribble_filename = TEMP_FILE_PREFIX + 'record.dat' self.clips_env = clips.Environment() self.engine = clips self.filemodel = FileModel() self.fact_filename = '' ## fact dataframe self.data = np.array([]) self.data_header = np.array([]) # self.dataframe = pd.DataFrame ## mapper self.mapper_list = [] # Template and slot mapping pair list self.record_name = '' # Reasoning result record file name
print "\t\t\t\t-----------------------------------------------" print "\t\t\t\t PID Tuning with Artificial Intelegence method" print "\t\t\t\t Tower Copter Control" print "\t\t\t\t M.Imam Muttaqin" print "\t\t\t\t-----------------------------------------------" print "\t\t\t\t Select Mode > 1.Automatic (use default-conf)" print "\t\t\t\t > 2.Genetic Algorithm (Hard Tune)" print "\t\t\t\t > 3.Neural Network (Soft Tune)" print "\t\t\t\t > 4.TensorFlow (Soft Tune)" print "\t\t\t\t > 5.NN Predict" print "\t\t\t\t > 99.Exit" i_mode = input("\t\t\t\t : ") name_model = raw_input("Enter name of models: ") file_model = FileModel(name_model) if i_mode == 1: ga(True) nn() elif i_mode == 2: ga() elif i_mode == 3: nn() elif i_mode == 4: keras() elif i_mode == 5: nn_predict() else: sys.exit()