def result_integrate_intra(time_now): training_type = 'intra' span = len(proportional_list) fold_path = root_path + '/result_test1/proportional_integrate' new_fold(fold_path) feature_type = 'TD4' norm = '_norm' subject_list = ['subject_' + str(i) for i in range(1, 6)] res_all = [] blank_line = ['' for i in range(len(channel_pos_list))] res_all.append(blank_line) for action in action_lists: for subject in subject_list: res = [] index = 2 res_ind = 1 data = result_load('250_100',feature_type, subject, norm, action, training_type) title = feature_type+'_'+subject+'_action_1-'+str(action) res_head = [title] res_head.extend(proportional_list) res.append(res_head) for i in range(len(channel_pos_list)): res_intra = [channel_pos_list[i]] # print res_intra res_intra.extend(map(float,data[index:index+span,4][:])) index += span res.append(res_intra) res_np = np.array(res) res_aver = ['average'] for i in range(len(proportional_list)): res_aver.append(np.mean(map(float,res_np[res_ind:,i+1]))) res.append(res_aver) # file_path = fold_path + '/prop_'+training_type+'_'+title+'_'+str(time_now) # log_result(res, file_path, 2) res_all.extend(res) res_all.append(blank_line) res_all.append(blank_line) res_all.append(blank_line) res_all.append(blank_line) res_all.append(blank_line) file_path = fold_path + '/prop_'+training_type+'_all_'+str(time_now) log_result(res_all, file_path, 2)
def result_integrate_intra(time_now): training_type = 'intra' feature_type = 'TD4' norm = '_norm' channel_pos_list = [ 'S0', # 中心位置 'U1', 'U2', 'D1', 'D2', 'L1', 'L2', 'R1', 'R2' ] # 上 下 左 右 # action = 7 # subject='subject_1' action_lists = [7, 9, 11] subject_list = ['subject_' + str(i) for i in range(1, 6)] res_all = [] blank_line = ['' for i in range(len(channel_pos_list) + 1)] for i in range(5): res_all.append(blank_line) fold_path = root_path + '/result/cca_analyse' new_fold(fold_path) for action in action_lists: for subject in subject_list: data = result_load('250_100', feature_type, subject, norm, action, training_type) title = feature_type + '_' + subject + '_action_1-' + str(action) res = [] res_head = [title] res_head.extend(channel_pos_list[1:]) res_head.append('Average') res.append(res_head) index = 3 span = len(channel_pos_list) - 1 res_intra = ['intra'] temp = map(float, data[index:index + span, 4][:]) res_intra.extend(temp) res_intra.append(np.mean(temp)) res.append(res_intra) index += span res_center = ['center'] temp = map(float, data[index:index + span, 4][:]) res_center.extend(temp) res_center.append(np.mean(temp)) res.append(res_center) index += span res_group = ['group'] temp = map(float, data[index:index + span, 4][:]) res_group.extend(temp) res_group.append(np.mean(temp)) res.append(res_group) for i in range(6): n_components = 6 + i * 2 index += span res_CCA = ['CCA_' + str(n_components)] temp = map(float, data[index:index + span, 4][:]) res_CCA.extend(temp) res_CCA.append(np.mean(temp)) res.append(res_CCA) res_all.extend(res) for j in range(10): res_all.append(blank_line) file_path = fold_path + '/' + feature_type + '_' + training_type + '_' + time_now log_result(res_all, file_path, 2)
def result_integrate_intra(time_now): training_type = 'intra' feature_type = 'TD4' norm = '_norm' channel_pos_list = ['S0', # 中心位置 'U1', 'U2', 'D1', 'D2', 'L1', 'L2', 'R1', 'R2'] # 上 下 左 右 # action = 7 # subject='subject_1' action_lists = [7, 9, 11] subject_list = ['subject_' + str(i) for i in range(1, 6)] res_all = [] blank_line = ['' for i in range(len(channel_pos_list)+1)] for i in range(5): res_all.append(blank_line) fold_path = root_path + '/result/cca_analyse' new_fold(fold_path) for action in action_lists: for subject in subject_list: data = result_load('250_100',feature_type, subject, norm, action, training_type) title = feature_type+'_'+subject+'_action_1-'+str(action) res = [] res_head = [title] res_head.extend(channel_pos_list[1:]) res_head.append('Average') res.append(res_head) index = 3 span = len(channel_pos_list)-1 res_intra = ['intra'] temp = map(float, data[index:index+span,4][:]) res_intra.extend(temp) res_intra.append(np.mean(temp)) res.append(res_intra) index += span res_center = ['center'] temp = map(float, data[index:index+span,4][:]) res_center.extend(temp) res_center.append(np.mean(temp)) res.append(res_center) index += span res_group = ['group'] temp = map(float, data[index:index+span,4][:]) res_group.extend(temp) res_group.append(np.mean(temp)) res.append(res_group) for i in range(6): n_components = 6+i*2 index += span res_CCA = ['CCA_'+str(n_components)] temp = map(float, data[index:index+span,4][:]) res_CCA.extend(temp) res_CCA.append(np.mean(temp)) res.append(res_CCA) res_all.extend(res) for j in range(10): res_all.append(blank_line) file_path = fold_path + '/' + feature_type+'_'+training_type+'_'+time_now log_result(res_all, file_path, 2)