Пример #1
0
def read_frames(seq_path_i, as_dict=False):
    if (as_dict):
        return {
            files.clean_str(path_j): cv2.imread(path_j, cv2.IMREAD_GRAYSCALE)
            for path_j in files.top_files(seq_path_i)
        }
    return [
        cv2.imread(path_j, cv2.IMREAD_GRAYSCALE)
        for path_j in files.top_files(seq_path_i)
    ]
Пример #2
0
def read_frame_seqs(in_path, n_split=1):
    frame_seqs = FrameSeqs()
    for i, path_i in enumerate(files.top_files(in_path)):
        name_i = files.Name(path_i.split('/')[-1]).clean()
        if (len(name_i) == 0):
            name_i = files.Name(str(i))
        frames = [
            read_frame(path_j, n_split) for path_j in files.top_files(path_i)
        ]
        frame_seqs[name_i] = frames
    return frame_seqs
Пример #3
0
def convert(in_path, out_path):
    paths = files.top_files(in_path)
    files.make_dir(out_path)
    for path_i in paths:
        out_i = out_path + '/' + path_i.split('/')[-1]
        frames = from_binary(path_i)
        to_imgs(frames, out_i)
Пример #4
0
def simple_exp(dataset):
    if (os.path.isdir(dataset)):
        dataset = files.top_files(dataset)
    result = train_model(dataset)
    result.report()
    print(result.get_error())
    print(result.get_acc())
Пример #5
0
def binary_feats(seq_path, feats_path=None):
    feats_path = get_dirs(seq_path, "feats")
    files.make_dir(feats_path)
    for i, in_i in enumerate(files.top_files(seq_path)):
        print(i)
        out_i = feats_path + '/' + in_i.split('/')[-1]
        feats.compute_feats(in_i, out_i)
Пример #6
0
def transform_action_img(in_path, out_path, fun):
    files.make_dir(out_path)
    for in_i in files.top_files(in_path):
        out_i = "%s/%s" % (out_path, in_i.split('/')[-1])
        img_i = cv2.imread(in_i, cv2.IMREAD_GRAYSCALE)
        new_img_i = fun(img_i)
        cv2.imwrite(out_i, new_img_i)
Пример #7
0
def read_actions(in_path):
    actions = ActionImgs()
    for path_i in files.top_files(in_path):
        name_i = files.Name(path_i.split('/')[-1])
        name_i = name_i.clean()
        actions[name_i] = cv2.imread(path_i, cv2.IMREAD_GRAYSCALE)
    return actions
Пример #8
0
def read_frames(seq_path_i):
    if (seq_path_i.split(".")[-1] == "npy"):
        return np.load(seq_path_i)
    return [
        cv2.imread(frame_path_j, cv2.IMREAD_GRAYSCALE)
        for frame_path_j in files.top_files(seq_path_i)
    ]
Пример #9
0
def transform_template(fun, in_path, out_path, info=None, dir_ensemble=True):
    if (not is_ens(in_path) and dir_ensemble):
        return apply_fun(fun, in_path, out_path, info)
    files.make_dir(out_path)
    for in_i in files.top_files(in_path):
        out_i = '%s/%s' % (out_path, in_i.split("/")[-1])
        apply_fun(fun, in_i, out_i, info)
Пример #10
0
def extract_ensemble(img_path, dst_dir=None):
    model_path, seq_path = get_dirs(img_path, ['models', 'seqs'], dst_dir)
    files.make_dir(seq_path)
    for i, model_i in enumerate(files.top_files(model_path)):
        seq_i = "%s/nn%d" % (seq_path, i)
        model_i = "%s/nn%d" % (model_path, i)
        #        resnet.extract_feats(seq_path,model_i,feat_i)
        sim.frames.extract_feats(img_path, model_i, seq_i)
Пример #11
0
def ensemble_exp(in_path, out_name, n_epochs=1000, size=64):
    input_paths = files.top_files("%s/seqs" % in_path)
    out_path = "%s/%s" % (in_path, out_name)
    ts_cnn = TS_CNN(dropout=0.5, activ='elu', optim_alg=deep.Nestrov())
    train, extract = get_train(ts_cnn)
    ensemble = ens.ts_ensemble(train, extract)
    arg_dict = {'size': size, 'n_epochs': n_epochs}
    ensemble(input_paths, out_path, arg_dict)
Пример #12
0
def read(in_path):
    if (type(in_path) == list):
        return [read_unified(in_path)]
    if (not os.path.isdir(in_path)):
        return [from_dict(read_single(in_path))]
    return [
        from_dict(read_single(path_i)) for path_i in files.top_files(in_path)
    ]
Пример #13
0
def check_model(in_path):
    if (os.path.isdir(in_path)):
        model_path = in_path + "/frame_models"
        paths = files.top_files(model_path)
        model = load_model(paths[0])
    else:
        model = load_model(in_path)
    model.summary()
Пример #14
0
def read_local_feats(in_path):
    paths = files.top_files(in_path)
    feat_dict = {}
    for path_i in paths:
        name_i = path_i.split("/")[-1]
        name_i = data.clean_name(path_i)
        feat_dict[name_i] = load_seq(path_i)
    return feat_dict
Пример #15
0
def ensemble1D(in_path, out_name, n_epochs=1000, size=64, atten=False):
    input_paths = files.top_files("%s/seqs" % in_path)
    out_path = "%s/%s" % (in_path, out_name)
    files.make_dir(out_path)
    train, extract = get_train(atten)
    ensemble = ens.ts_ensemble(train, extract)
    arg_dict = {'size': size, 'n_epochs': n_epochs}
    ensemble(input_paths, out_path, arg_dict)
Пример #16
0
def convert_inert(in_path, out_path):
    paths = files.top_files(in_path)
    files.make_dir(out_path)
    for path_i in paths:
        out_i = out_path + '/' + path_i.split('/')[-1]
        mat_i = scipy.io.loadmat(path_i)
        mat_i = mat_i['d_iner']
        np.savetxt(out_i, mat_i, delimiter=',')
Пример #17
0
def read_seqs(in_path):
    seqs = {}
    for seq_path_i in files.top_files(in_path):
        frames = read_frames(seq_path_i)
        name_i = seq_path_i.split('/')[-1]
        print(name_i)
        seqs[name_i] = frames
    return seqs
Пример #18
0
def read_seqs(in_path):
	seqs=Seqs()
	for path_i in files.top_files(in_path):
		data_i=np.loadtxt(path_i, delimiter=',')
		name_i=path_i.split('/')[-1]
		name_i=files.Name(name_i).clean()#clean(name_i)
		seqs[name_i]=data_i
	return seqs
Пример #19
0
def ensemble_agum(in_path, out_path, n_epochs=1000, size=128):
    model = ts_cnn.TS_CNN(dropout=0.5, optim_alg=deep.Nestrov())
    train, extract = ts_cnn.get_train(model)
    ensemble = ens.ts_ensemble(train, extract, preproc=norm_partial)
    input_paths = files.top_files(in_path)
    arg_dict = {"n_epochs": n_epochs, "size": size}
    files.make_dir(out_path)
    ensemble(input_paths, out_path, arg_dict)
Пример #20
0
def check_feature(in_path):
    all_ts = []
    for path_i in files.top_files(in_path):
        seq_dict_i = data.seqs.read_seqs(path_i)
        feat_dict_i = seq_dict_i.to_feats(scipy.stats.kurtosis, single=True)
        X, y = feat_dict_i.to_dataset()
        all_ts.append(X.flatten())
    all_ts = np.array(all_ts).flatten()
    print(basic_stats(all_ts))
Пример #21
0
def img_dataset(in_path):
    img_dict={}
    for path_i in files.top_files(in_path):
        name_i=files.clean_str(path_i.split("/")[-1])
        img_i=cv2.imread(path_i, cv2.IMREAD_GRAYSCALE)
        img_i=np.expand_dims(img_i,-1)
        img_dict[name_i]=img_i
    print(img_dict.keys())
    return img_dict
Пример #22
0
def extract_template(fun, frame_path, model_path, out_path):
    if (not is_ens(frame_path)):
        return fun(frame_path, model_path, out_path)
    files.make_dir(out_path)
    for in_i in files.top_files(frame_path):
        model_i = '%s/%s' % (model_path, in_i.split("/")[-1])
        out_i = '%s/%s' % (out_path, in_i.split("/")[-1])
        print(in_i)
        fun(in_i, model_i, out_i)
Пример #23
0
def action_img(in_path, out_path, action_fun):
    if (type(action_fun) == list):
        action_fun = Pipeline(action_fun)
    files.make_dir(out_path)
    for in_i in files.top_files(in_path):
        frames = read_frames(in_i)
        action_img_i = action_fun(frames)
        out_i = out_path + '/' + in_i.split('/')[-1] + ".png"
        cv2.imwrite(out_i, action_img_i)
Пример #24
0
def read_seqs(in_path):
    paths = files.top_files(in_path)
    seq_dict = Seqs()
    for path_i in paths:
        data_i = np.load(path_i)
        name_i = path_i.split('/')[-1]
        name_i = files.Name(name_i).clean()
        seq_dict[name_i] = data_i
    return seq_dict
Пример #25
0
def binary_extract(frame_path,model_path,seq_path):
    files.make_dir(seq_path)
    paths=model_path if(type(model_path)==list) else files.top_files(model_path) 
    frame_dict=imgs.read_seqs(frame_path)
    for i,in_i in enumerate(paths):
        print(i)
        out_i= seq_path+'/'+in_i.split('/')[-1]
        extract.extract_features(frame_dict,in_i,out_i)
        gc.collect()
Пример #26
0
def proj_template(in_path,out_path,proj_funcs):
    files.make_dir(out_path)
    paths=files.top_files(in_path)
    for seq_path_i in paths:
        print(seq_path_i)
        seq_i=imgs.read_frames(seq_path_i,as_dict=False)
        proj_seq_i=[proj_i(seq_i) for proj_i in proj_funcs]
        new_imgs=np.concatenate(proj_seq_i,axis=1)
        out_i="%s/%s" % (out_path,seq_path_i.split("/")[-1])
        imgs.save_frames(out_i,new_imgs)
Пример #27
0
def read_seqs(in_path):
    seq_dict = {}
    for path_i in files.top_files(in_path):
        postfix = in_path.split(".")[-1]
        if (postfix == "npy"):
            seq_i = np.loadtxt(path_i, delimiter=',')
        else:
            seq_i = np.load(path_i)
        seq_dict[path_i.split('/')[-1]] = seq_i
    return seq_dict
Пример #28
0
 def __call__(self, common_path, binary_path, info):
     lines = []
     for binary_i in files.top_files(binary_path):
         id_i = binary_i.split('/')[-1]
         path_i = "%s/feats" % binary_i
         desc_i = self.fun(common_path, path_i)
         desc_i = "%s,%s,%s" % (info, id_i, desc_i)
         print(desc_i)
         lines.append(str(desc_i))
     return lines
Пример #29
0
def make_plot(in_path, out_path):
    if (not os.path.isdir(in_path)):
        plot_i = tsne_plot(in_path, show=False)
        plot_i.savefig(out_path)
    else:
        files.make_dir(out_path)
        for in_i in files.top_files(in_path):
            out_i = "%s/%s" % (out_path, in_i.split('/')[-1])
            plot_i = tsne_plot(in_i, show=False)
            plot_i.savefig(out_i)
Пример #30
0
def reformat(in_path,out_path,in_dict="rank_rev"):
	pattern="%s/%i/image2/"+in_dict
	files.make_dir(out_path)
	for i in range(1,21):
		in_i=pattern % (in_path,i)
		for in_ij in files.top_files(in_i):
			print(in_ij)		
			name_ij=in_ij.split('/')[-1]
			out_ij="%s/%d_%s" %(out_path,i,name_ij)
			print(out_ij)
			shutil.copyfile(in_ij, out_ij)