def gen_rings_ctf( prjref, nx, ctf, numr): """ Convert set of ffts of projections to Fourier rings with additional multiplication by a ctf The command returns list of rings """ from math import sin, cos, pi from fundamentals import fft from alignment import ringwe from filter import filt_ctf mode = "F" wr_four = ringwe(numr, "F") cnx = nx//2 + 1 cny = nx//2 + 1 qv = pi/180.0 refrings = [] # list of (image objects) reference projections in Fourier representation for i in xrange( len(prjref) ): cimage = Util.Polar2Dm(filt_ctf(prjref[i], ctf, True) , cnx, cny, numr, mode) # currently set to quadratic.... Util.Normalize_ring(cimage, numr) Util.Frngs(cimage, numr) Util.Applyws(cimage, numr, wr_four) refrings.append(cimage) phi = prjref[i].get_attr('phi') theta = prjref[i].get_attr('theta') psi = prjref[i].get_attr('psi') n1 = sin(theta*qv)*cos(phi*qv) n2 = sin(theta*qv)*sin(phi*qv) n3 = cos(theta*qv) refrings[i].set_attr_dict( {"n1":n1, "n2":n2, "n3":n3, "phi": phi, "theta": theta,"psi": psi} ) return refrings
def gen_rings_ctf( prjref, nx, ctf, numr): """ Convert set of ffts of projections to Fourier rings with additional multiplication by a ctf The command returns list of rings """ from math import sin, cos, pi from fundamentals import fft from alignment import ringwe from filter import filt_ctf mode = "F" wr_four = ringwe(numr, "F") cnx = nx//2 + 1 cny = nx//2 + 1 qv = pi/180.0 refrings = [] # list of (image objects) reference projections in Fourier representation for i in range( len(prjref) ): cimage = Util.Polar2Dm(filt_ctf(prjref[i], ctf, True) , cnx, cny, numr, mode) # currently set to quadratic.... Util.Normalize_ring(cimage, numr, 0 ) Util.Frngs(cimage, numr) Util.Applyws(cimage, numr, wr_four) refrings.append(cimage) phi = prjref[i].get_attr('phi') theta = prjref[i].get_attr('theta') psi = prjref[i].get_attr('psi') n1 = sin(theta*qv)*cos(phi*qv) n2 = sin(theta*qv)*sin(phi*qv) n3 = cos(theta*qv) refrings[i].set_attr_dict( {"n1":n1, "n2":n2, "n3":n3, "phi": phi, "theta": theta,"psi": psi} ) return refrings
def main(): import os import sys from optparse import OptionParser arglist = [] for arg in sys.argv: arglist.append(arg) progname = os.path.basename(arglist[0]) usage = progname + """ input_ctf_params input_ctf_params: output file from sx_cter.py, which was run in Multi-micrograph mode Note: files to be flipped should be in same directory. Outputs: phase-flipped files in hdf format, with identical filenames as input """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--input_ctf_params", type="string", default="partres.txt", help="output from sxcter.py") (options, args) = parser.parse_args(arglist[1:]) infile = options.input_ctf_params padimg = True #ctf correction -- pad image sign = 1 # ctf correction - sign binary = 1 # ctf correction: phaseflip only from utilities import generate_ctf from filter import filt_ctf global_def.BATCH = True file_content = open(infile) ctflist = file_content.readlines() img = EMData() for line in ctflist: data = line.split() imgfile = data[17] print "Working on file %s\n" % (imgfile) (name, ext) = imgfile.split(".") outfile = name + '.hdf' # Assumes input files are NOT hdf format! otherwise will overwrite them df = float(data[0]) cs = float(data[1]) voltage = float(data[2]) apix = float(data[3]) bfactor = float(data[4]) amp_contrast = float(data[5]) astig = float(data[6]) astig_ang = float(data[7]) ctf = generate_ctf( [df, cs, voltage, apix, bfactor, amp_contrast, astig, astig_ang]) img.read_image(imgfile) corr_img = filt_ctf(img, ctf, padimg, sign, binary) corr_img.write_image(outfile)
def generate_helimic(refvol, outdir, pixel, CTF=False, Cs=2.0,voltage = 200.0, ampcont = 10.0, nonoise = False, rand_seed=14567): from utilities import model_blank, model_gauss, model_gauss_noise, pad, get_im from random import random from projection import prgs, prep_vol from filter import filt_gaussl, filt_ctf from EMAN2 import EMAN2Ctf if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxhelical_demo", 1) os.mkdir(outdir) seed(rand_seed) Util.set_randnum_seed(rand_seed) angles =[] for i in xrange(3): angles.append( [0.0+60.0*i, 90.0-i*5, 0.0, 0.0, 0.0] ) nangle = len(angles) volfts = get_im(refvol) nx = volfts.get_xsize() ny = volfts.get_ysize() nz = volfts.get_zsize() volfts, kbx, kby, kbz = prep_vol( volfts ) iprj = 0 width = 500 xstart = 0 ystart = 0 for idef in xrange(3,6): mic = model_blank(2048, 2048) #defocus = idef*0.2 defocus = idef*0.6 ##@ming if CTF : #ctf = EMAN2Ctf() #ctf.from_dict( {"defocus":defocus, "cs":Cs, "voltage":voltage, "apix":pixel, "ampcont":ampcont, "bfactor":0.0} ) from utilities import generate_ctf ctf = generate_ctf([defocus,2,200,1.84,0.0,ampcont,defocus*0.2,80]) ##@ming the range of astigmatism amplitude is between 10 percent and 22 percent. 20 percent is a good choice. i = idef - 4 for k in xrange(1): psi = 90 + 10*i proj = prgs(volfts, kbz, [angles[idef-3][0], angles[idef-3][1], psi, 0.0, 0.0], kbx, kby) proj = Util.window(proj, 320, nz) mic += pad(proj, 2048, 2048, 1, 0.0, 750*i, 20*i, 0) if not nonoise: mic += model_gauss_noise(30.0,2048,2048) if CTF : #apply CTF mic = filt_ctf(mic, ctf) if not nonoise: mic += filt_gaussl(model_gauss_noise(17.5,2048,2048), 0.3) mic.write_image("%s/mic%1d.hdf"%(outdir, idef-3),0)
def main(): from utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr (default 2,1)") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)") parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)") parser.add_option("--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)") parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option("--verbose", action="store_true", default=False, help="print individual pixel error (default = False)") parser.add_option("--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)") parser.add_option("--method", type="string" , default=" ", help="SHC (standard method is default when flag is ommitted)") (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import write_text_file, write_text_row global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx/2-2 from utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in xrange(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \ maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \ maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method) from utilities import info #print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d"%ii) """ avet = class_data[0] from utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2*ou+1) print "%4s %20s %20s %20s %30s %6.2f"%("", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of",options.thld_err) print "Average stat: %10d %20d %20.2f %15.2f"%( len(class_data), len(stable_set), mir_stab_rate, pix_err) if( len(stable_set) > 0): if options.stables: stab_mem = [[0,0.0,0] for j in xrange(len(stable_set))] for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from fundamentals import rot_shift2D avet.to_zero() l = -1 print "average parameters: angle, x-shift, y-shift, mirror" for j in stable_set_id: l += 1 print " %4d %4d %12.2f %12.2f %12.2f %1d"%(l,j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3])) avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) avet /= (l+1) avet.set_attr('members', stable_set_id) avet.set_attr('pix_err', pix_err) avet.set_attr('pixerr', particle_pixerr) avet.write_image(args[1]) global_def.BATCH = False
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl=15. --aa=0.01 --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="output directory") parser.add_option("--ave2D", type="string", default=False, help="write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string", default=False, help="write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string", default=False, help="write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string", default=False, help="compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int", default=10, help="number of neighbouring projections") parser.add_option("--no_norm", action="store_true", default=False, help="do not use normalization") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option("--npad", type="int", default=2, help="number of time to pad the original images") parser.add_option("--sym", type="string", default="c1", help="symmetry") parser.add_option( "--fl", type="float", default=0.0, help= "cutoff freqency in absolute frequency (0.0-0.5). (Default - no filtration)" ) parser.add_option( "--aa", type="float", default=0.0, help= "fall off of the filter. Put 0.01 if user has no clue about falloff (Default - no filtration)" ) parser.add_option("--CTF", action="store_true", default=False, help="use CFT correction") parser.add_option("--VERBOSE", action="store_true", default=False, help="Long output for debugging") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="stack on input consists of 2D variances (Default False)") parser.add_option( "--decimate", type="float", default=1.0, help= "image decimate rate, a number larger (expand image) or less (shrink image) than 1. default is 1" ) parser.add_option( "--window", type="int", default=0, help= "reduce images to a small image size without changing pixel_size. Default value is zero." ) #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") parser.add_option( "--nvec", type="int", default=0, help="number of eigenvectors, default = 0 meaning no PCA calculated") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") (options, args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: global_def.MPI = True if options.symmetrize: if RUNNING_UNDER_MPI: try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if (number_of_proc > 1): ERROR( "Cannot use more than one CPU for symmetry prepration", "sx3dvariability", 1) except: pass except: pass if options.output_dir != "./" and not os.path.exists( options.output_dir): os.mkdir(options.output_dir) # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" from logger import Logger, BaseLogger_Files if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(options.output_dir, "./") instack = args[0] sym = options.sym.lower() if (sym == "c1"): ERROR("There is no need to symmetrize stack for C1 symmetry", "sx3dvariability", 1) line = "" for a in sys.argv: line += " " + a log_main.add(line) if (instack[:4] != "bdb:"): if output_dir == "./": stack = "bdb:data" else: stack = "bdb:" + options.output_dir + "/data" delete_bdb(stack) junk = cmdexecute("sxcpy.py " + instack + " " + stack) else: stack = instack qt = EMUtil.get_all_attributes(stack, 'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None] * na for k in xrange(ks): #Qfile = "Q%1d"%k if options.output_dir != "./": Qfile = os.path.join(options.output_dir, "Q%1d" % k) else: Qfile = os.path.join(options.output_dir, "Q%1d" % k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:" + Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:" + Qfile) for i in xrange(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() if options.output_dir == "./": delete_bdb("bdb:sdata") else: delete_bdb("bdb:" + options.output_dir + "/" + "sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + options.output_dir + "/" + "sdata" print(sdata) junk = cmdexecute("e2bdb.py " + options.output_dir + " --makevstack=" + sdata + " --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry", sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 1: stack = args[0] else: print(("usage: " + usage)) print(("Please run '" + progname + " -h' for detailed options")) return 1 t0 = time() # obsolete flags options.MPI = True options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) if options.VAR and options.SND: ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) exit() if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) exit() #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) # exit() if options.nvec > 0: ERROR("PCA option not implemented", "sx3dvariability", 1, myid) exit() if options.nvec > 0 and options.ave3D == None: ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", myid=myid) exit() import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if options.output_dir != "./" and not os.path.exists( options.output_dir): os.mkdir(options.output_dir) img_per_grp = options.img_per_grp nvec = options.nvec radiuspca = options.radiuspca from logger import Logger, BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(options.output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("instack :" + stack) log_main.add("output_dir :" + options.output_dir) log_main.add("var3d :" + options.var3D) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" #print_begin_msg("sx3dvariability") msg = "sx3dvariability" log_main.add(msg) print(line, msg) msg = ("%-70s: %s\n" % ("Input stack", stack)) log_main.add(msg) print(line, msg) symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() if options.sym != "c1": imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if (i != options.sym): ERROR( "The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", myid=myid) except: ERROR( "Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", myid=myid) from utilities import get_symt i = len(get_symt(options.sym)) if ((nima / i) * i != nima): ERROR( "The length of the input stack is incorrect for symmetry processing", "sx3dvariability", myid=myid) symbaselen = nima / i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) Tracker = {} Tracker["total_stack"] = nima if options.decimate == 1.: if options.window != 0: nx = options.window ny = options.window else: if options.window == 0: nx = int(nx * options.decimate) ny = int(ny * options.decimate) else: nx = int(options.window * options.decimate) ny = nx Tracker["nx"] = nx Tracker["ny"] = ny Tracker["nz"] = nx symbaselen = bcast_number_to_all(symbaselen) if radiuspca == -1: radiuspca = nx / 2 - 2 if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = "%-70s: %d\n" % ("Number of projection", nima) log_main.add(msg) print(line, msg) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: #varList = EMData.read_images(stack, range(img_begin, img_end)) varList = [] this_image = EMData() for index_of_particle in xrange(img_begin, img_end): this_image.read_image(stack, index_of_particle) varList.append( image_decimate_window_xform_ctf(this_image, options.decimate, options.window, options.CTF)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in xrange(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp) log_main.add(msg) print(line, msg) msg = "...... Finding neighboring projections\n" log_main.add(msg) print(line, msg) if options.VERBOSE: msg = "Number of images per group: %d" % img_per_grp log_main.add(msg) print(line, msg) msg = "Now grouping projections" log_main.add(msg) print(line, msg) proj_angles.sort() proj_angles_list = [0.0] * (nima * 4) if myid == main_node: for i in xrange(nima): proj_angles_list[i * 4] = proj_angles[i][1] proj_angles_list[i * 4 + 1] = proj_angles[i][2] proj_angles_list[i * 4 + 2] = proj_angles[i][3] proj_angles_list[i * 4 + 3] = proj_angles[i][4] proj_angles_list = bcast_list_to_all(proj_angles_list, myid, main_node) proj_angles = [] for i in xrange(nima): proj_angles.append([ proj_angles_list[i * 4], proj_angles_list[i * 4 + 1], proj_angles_list[i * 4 + 2], int(proj_angles_list[i * 4 + 3]) ]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) if options.VERBOSE: print("On node %2d, number of images needed to be read = %5d" % (myid, len(all_proj))) index = {} for i in xrange(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time() - t2)) log_main.add(msg) print(msg) msg = ("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add(msg) print(line, msg) if options.VERBOSE: print("Grouping projections took: ", (time() - t2) / 60, "[min]") print("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("...... calculating the stack of 2D variances \n") log_main.add(msg) print(line, msg) if options.VERBOSE: print("Now calculating the stack of 2D variances") proj_params = [0.0] * (nima * 5) aveList = [] varList = [] if nvec > 0: eigList = [[] for i in xrange(nvec)] if options.VERBOSE: print("Begin to read images on processor %d" % (myid)) ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [] for index_of_proj in xrange(len(all_proj)): #img = EMData() #img.read_image(stack, all_proj[index_of_proj]) dmg = image_decimate_window_xform_ctf( get_im(stack, all_proj[index_of_proj]), options.decimate, options.window, options.CTF) #print dmg.get_xsize(), "init" imgdata.append(dmg) if options.VERBOSE: print("Reading images on processor %d done, time = %.2f" % (myid, time() - ttt)) print("On processor %d, we got %d images" % (myid, len(imgdata))) mpi_barrier(MPI_COMM_WORLD) ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank for i in xrange(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi]) grp_imgdata = [] for j in xrange(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj]) alpha, sx, sy, mirror = params_3D_2D_NEW( phi, theta, psi, s2x, s2y, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, phiM - phi, 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - phi), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(phiM - phi), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - phi)), 0.0, 0.0, 1.0) set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0]) grp_imgdata.append(imgdata[mj]) #print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize() if not options.no_norm: #print grp_imgdata[j].get_xsize() mask = model_circle(nx / 2 - 2, nx, nx) for k in xrange(img_per_grp): ave, std, minn, maxx = Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std del mask if options.fl > 0.0: from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2 * nx ny2 = 2 * ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_tanl( filt_ctf( fft( pad(grp_imgdata[k], nx2, ny2, 1, 0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa)), nx, ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: for k in xrange(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: from utilities import pad, read_text_file from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2 * nx ny2 = 2 * ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_ctf(fft( pad(grp_imgdata[k], nx2, ny2, 1, 0.0)), grp_imgdata[k].get_attr("ctf"), binary=1)), nx, ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) ''' if i < 10 and myid == main_node: for k in xrange(10): grp_imgdata[k].write_image("grp%03d.hdf"%i, k) ''' """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("pp.hdf", pp) """ ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata) """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("qq.hdf", pp) """ var = model_blank(nx, ny) for q in grp_imgdata: Util.add_img2(var, q) Util.mul_scalar(var, 1.0 / (len(grp_imgdata) - 1)) # Switch to std dev var = square_root(threshold(var)) #if options.CTF: ave, var = avgvar_ctf(grp_imgdata, mode="a") #else: ave, var = avgvar(grp_imgdata, mode="a") """ if myid == main_node: ave.write_image("avgv.hdf",i) var.write_image("varv.hdf",i) """ set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) if options.VERBOSE: print("%5.2f%% done on processor %d" % (i * 100.0 / len(proj_list), myid)) if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in xrange(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ del imgdata # To this point, all averages, variances, and eigenvectors are computed if options.ave2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(aveList)): aveList[im].write_image( os.path.join(options.output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol = fpol(ave, Tracker["nx"], Tracker["nx"], 1) tmpvol.write_image( os.path.join(options.output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if options.ave3D: from fundamentals import fpol if options.VERBOSE: print("Reconstructing 3D average volume") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" ave3D = fpol(ave3D, Tracker["nx"], Tracker["nx"], Tracker["nx"]) ave3D.write_image( os.path.join(options.output_dir, options.ave3D)) msg = ("%-70s: %s\n" % ( "Writing to the disk volume reconstructed from averages as", options.ave3D)) log_main.add(msg) print(line, msg) del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList if nvec > 0: for k in xrange(nvec): if options.VERBOSE: print("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image( os.path.join(options.outpout_dir, "eig3d_%03d.hdf" % (k, ITER))) Util.mul_img(eig3D, model_circle(radiuspca, nx, nx, nx)) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in xrange(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj( eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" u = int(u[0]) msg = (" Eigenvector: ", k, " number changed ", int(icont[0])) log_main.add(msg) print(line, msg) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(varList)): tmpvol = fpol(varList[im], Tracker["nx"], Tracker["nx"], 1) tmpvol.write_image( os.path.join(options.output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) tmpvol = fpol(ave, Tracker["nx"], Tracker["nx"], 1) tmpvol.write_image( os.path.join(options.output_dir, options.var2D, km)) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(varList)): send_EMData(varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node and options.VERBOSE: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("Reconstructing 3D variability volume") log_main.add(msg) print(line, msg) t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol res = fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"]) res.write_image(os.path.join(options.output_dir, options.var3D)) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n" % ("Reconstructing 3D variability took [s]", time() - t6)) log_main.add(msg) print(line, msg) if options.VERBOSE: print("Reconstruction took: %.2f [min]" % ((time() - t6) / 60)) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n" % ("Total time for these computations [s]", time() - t0)) print(line, msg) log_main.add(msg) if options.VERBOSE: print("Total time for these computations: %.2f [min]" % ((time() - t0) / 60)) line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("sx3dvariability") print(line, msg) log_main.add(msg) from mpi import mpi_finalize mpi_finalize() if RUNNING_UNDER_MPI: global_def.MPI = False global_def.BATCH = False
def main(): import sys import os import math import random import pyemtbx.options import time from random import random, seed, randint from optparse import OptionParser progname = os.path.basename(sys.argv[0]) usage = progname + """ [options] <inputfile> <outputfile> Generic 2-D image processing programs. Functionality: 1. Phase flip a stack of images and write output to new file: sxprocess.py input_stack.hdf output_stack.hdf --phase_flip 2. Resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size. The window size will change accordingly. sxprocess input.hdf output.hdf --changesize --ratio=0.5 3. Compute average power spectrum of a stack of 2D images with optional padding (option wn) with zeroes. sxprocess.py input_stack.hdf powerspectrum.hdf --pw [--wn=1024] 4. Generate a stack of projections bdb:data and micrographs with prefix mic (i.e., mic0.hdf, mic1.hdf etc) from structure input_structure.hdf, with CTF applied to both projections and micrographs: sxprocess.py input_structure.hdf data mic --generate_projections format="bdb":apix=5.2:CTF=True:boxsize=64 5. Retrieve original image numbers in the selected ISAC group (here group 12 from generation 3): sxprocess.py bdb:test3 class_averages_generation_3.hdf list3_12.txt --isacgroup=12 --params=originalid 6. Retrieve original image numbers of images listed in ISAC output stack of averages: sxprocess.py select1.hdf ohk.txt 7. Adjust rotationally averaged power spectrum of an image to that of a reference image or a reference 1D power spectrum stored in an ASCII file. Optionally use a tangent low-pass filter. Also works for a stack of images, in which case the output is also a stack. sxprocess.py vol.hdf ref.hdf avol.hdf < 0.25 0.2> --adjpw sxprocess.py vol.hdf pw.txt avol.hdf < 0.25 0.2> --adjpw 8. Generate a 1D rotationally averaged power spectrum of an image. sxprocess.py vol.hdf --rotwp=rotpw.txt # Output will contain three columns: (1) rotationally averaged power spectrum (2) logarithm of the rotationally averaged power spectrum (3) integer line number (from zero to approximately to half the image size) 9. Apply 3D transformation (rotation and/or shift) to a set of orientation parameters associated with projection data. sxprocess.py --transfromparams=phi,theta,psi,tx,ty,tz input.txt output.txt The output file is then imported and 3D transformed volume computed: sxheader.py bdb:p --params=xform.projection --import=output.txt mpirun -np 2 sxrecons3d_n.py bdb:p tvol.hdf --MPI The reconstructed volume is in the position of the volume computed using the input.txt parameters and then transformed with rot_shift3D(vol, phi,theta,psi,tx,ty,tz) 10. Import ctf parameters from the output of sxcter into windowed particle headers. There are three possible input files formats: (1) all particles are in one stack, (2 aor 3) particles are in stacks, each stack corresponds to a single micrograph. In each case the particles should contain a name of the micrograph of origin stores using attribute name 'ptcl_source_image'. Normally this is done by e2boxer.py during windowing. Particles whose defocus or astigmatism error exceed set thresholds will be skipped, otherwise, virtual stacks with the original way preceded by G will be created. sxprocess.py --input=bdb:data --importctf=outdir/partres --defocuserror=10.0 --astigmatismerror=5.0 # Output will be a vritual stack bdb:Gdata sxprocess.py --input="bdb:directory/stacks*" --importctf=outdir/partres --defocuserror=10.0 --astigmatismerror=5.0 To concatenate output files: cd directory e2bdb.py . --makevstack=bdb:allparticles --filt=G IMPORTANT: Please do not move (or remove!) any input/intermediate EMAN2DB files as the information is linked between them. 11. Scale 3D shifts. The shifts in the input five columns text file with 3D orientation parameters will be DIVIDED by the scale factor sxprocess.py orientationparams.txt scaledparams.txt scale=0.5 12. Generate adaptive mask from a given 3-D volume. """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option( "--order", action="store_true", help= "Two arguments are required: name of input stack and desired name of output stack. The output stack is the input stack sorted by similarity in terms of cross-correlation coefficent.", default=False) parser.add_option("--order_lookup", action="store_true", help="Test/Debug.", default=False) parser.add_option("--order_metropolis", action="store_true", help="Test/Debug.", default=False) parser.add_option("--order_pca", action="store_true", help="Test/Debug.", default=False) parser.add_option( "--initial", type="int", default=-1, help= "Specifies which image will be used as an initial seed to form the chain. (default = 0, means the first image)" ) parser.add_option( "--circular", action="store_true", help= "Select circular ordering (fisr image has to be similar to the last", default=False) parser.add_option( "--radius", type="int", default=-1, help="Radius of a circular mask for similarity based ordering") parser.add_option( "--changesize", action="store_true", help= "resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size.", default=False) parser.add_option( "--ratio", type="float", default=1.0, help= "The ratio of new to old image size (if <1 the pixel size will increase and image size decrease, if>1, the other way round" ) parser.add_option( "--pw", action="store_true", help= "compute average power spectrum of a stack of 2-D images with optional padding (option wn) with zeroes", default=False) parser.add_option( "--wn", type="int", default=-1, help= "Size of window to use (should be larger/equal than particle box size, default padding to max(nx,ny))" ) parser.add_option("--phase_flip", action="store_true", help="Phase flip the input stack", default=False) parser.add_option( "--makedb", metavar="param1=value1:param2=value2", type="string", action="append", help= "One argument is required: name of key with which the database will be created. Fill in database with parameters specified as follows: --makedb param1=value1:param2=value2, e.g. 'gauss_width'=1.0:'pixel_input'=5.2:'pixel_output'=5.2:'thr_low'=1.0" ) parser.add_option( "--generate_projections", metavar="param1=value1:param2=value2", type="string", action="append", help= "Three arguments are required: name of input structure from which to generate projections, desired name of output projection stack, and desired prefix for micrographs (e.g. if prefix is 'mic', then micrographs mic0.hdf, mic1.hdf etc will be generated). Optional arguments specifying format, apix, box size and whether to add CTF effects can be entered as follows after --generate_projections: format='bdb':apix=5.2:CTF=True:boxsize=100, or format='hdf', etc., where format is bdb or hdf, apix (pixel size) is a float, CTF is True or False, and boxsize denotes the dimension of the box (assumed to be a square). If an optional parameter is not specified, it will default as follows: format='bdb', apix=2.5, CTF=False, boxsize=64." ) parser.add_option( "--isacgroup", type="int", help= "Retrieve original image numbers in the selected ISAC group. See ISAC documentation for details.", default=-1) parser.add_option( "--isacselect", action="store_true", help= "Retrieve original image numbers of images listed in ISAC output stack of averages. See ISAC documentation for details.", default=False) parser.add_option( "--params", type="string", default=None, help="Name of header of parameter, which one depends on specific option" ) parser.add_option( "--adjpw", action="store_true", help="Adjust rotationally averaged power spectrum of an image", default=False) parser.add_option( "--rotpw", type="string", default=None, help= "Name of the text file to contain rotationally averaged power spectrum of the input image." ) parser.add_option( "--transformparams", type="string", default=None, help= "Transform 3D projection orientation parameters using six 3D parameters (phi, theta,psi,sx,sy,sz). Input: --transformparams=45.,66.,12.,-2,3,-5.5 desired six transformation of the reconstructed structure. Output: file with modified orientation parameters." ) # import ctf estimates done using cter parser.add_option("--input", type="string", default=None, help="Input particles.") parser.add_option( "--importctf", type="string", default=None, help="Name of the file containing CTF parameters produced by sxcter.") parser.add_option( "--defocuserror", type="float", default=1000000.0, help= "Exclude micrographs whose relative defocus error as estimated by sxcter is larger than defocuserror percent. The error is computed as (std dev defocus)/defocus*100%" ) parser.add_option( "--astigmatismerror", type="float", default=360.0, help= "Set to zero astigmatism for micrographs whose astigmatism angular error as estimated by sxcter is larger than astigmatismerror degrees." ) # import ctf estimates done using cter parser.add_option( "--scale", type="float", default=-1.0, help= "Divide shifts in the input 3D orientation parameters text file by the scale factor." ) # generate adaptive mask from an given 3-Db volue parser.add_option("--adaptive_mask", action="store_true", help="create adavptive 3-D mask from a given volume", default=False) parser.add_option( "--nsigma", type="float", default=1., help= "number of times of sigma of the input volume to obtain the the large density cluster" ) parser.add_option( "--ndilation", type="int", default=3, help= "number of times of dilation applied to the largest cluster of density" ) parser.add_option( "--kernel_size", type="int", default=11, help="convolution kernel for smoothing the edge of the mask") parser.add_option( "--gauss_standard_dev", type="int", default=9, help="stanadard deviation value to generate Gaussian edge") (options, args) = parser.parse_args() global_def.BATCH = True if options.phase_flip: nargs = len(args) if nargs != 2: print "must provide name of input and output file!" return from EMAN2 import Processor instack = args[0] outstack = args[1] nima = EMUtil.get_image_count(instack) from filter import filt_ctf for i in xrange(nima): img = EMData() img.read_image(instack, i) try: ctf = img.get_attr('ctf') except: print "no ctf information in input stack! Exiting..." return dopad = True sign = 1 binary = 1 # phase flip assert img.get_ysize() > 1 dict = ctf.to_dict() dz = dict["defocus"] cs = dict["cs"] voltage = dict["voltage"] pixel_size = dict["apix"] b_factor = dict["bfactor"] ampcont = dict["ampcont"] dza = dict["dfdiff"] azz = dict["dfang"] if dopad and not img.is_complex(): ip = 1 else: ip = 0 params = { "filter_type": Processor.fourier_filter_types.CTF_, "defocus": dz, "Cs": cs, "voltage": voltage, "Pixel_size": pixel_size, "B_factor": b_factor, "amp_contrast": ampcont, "dopad": ip, "binary": binary, "sign": sign, "dza": dza, "azz": azz } tmp = Processor.EMFourierFilter(img, params) tmp.set_attr_dict({"ctf": ctf}) tmp.write_image(outstack, i) elif options.changesize: nargs = len(args) if nargs != 2: ERROR("must provide name of input and output file!", "change size", 1) return from utilities import get_im instack = args[0] outstack = args[1] sub_rate = float(options.ratio) nima = EMUtil.get_image_count(instack) from fundamentals import resample for i in xrange(nima): resample(get_im(instack, i), sub_rate).write_image(outstack, i) elif options.isacgroup > -1: nargs = len(args) if nargs != 3: ERROR("Three files needed on input!", "isacgroup", 1) return from utilities import get_im instack = args[0] m = get_im(args[1], int(options.isacgroup)).get_attr("members") l = [] for k in m: l.append(int(get_im(args[0], k).get_attr(options.params))) from utilities import write_text_file write_text_file(l, args[2]) elif options.isacselect: nargs = len(args) if nargs != 2: ERROR("Two files needed on input!", "isacgroup", 1) return from utilities import get_im nima = EMUtil.get_image_count(args[0]) m = [] for k in xrange(nima): m += get_im(args[0], k).get_attr("members") m.sort() from utilities import write_text_file write_text_file(m, args[1]) elif options.pw: nargs = len(args) if nargs < 2: ERROR("must provide name of input and output file!", "pw", 1) return from utilities import get_im d = get_im(args[0]) nx = d.get_xsize() ny = d.get_ysize() if nargs == 3: mask = get_im(args[2]) wn = int(options.wn) if wn == -1: wn = max(nx, ny) else: if ((wn < nx) or (wn < ny)): ERROR("window size cannot be smaller than the image size", "pw", 1) n = EMUtil.get_image_count(args[0]) from utilities import model_blank, model_circle, pad from EMAN2 import periodogram p = model_blank(wn, wn) for i in xrange(n): d = get_im(args[0], i) if nargs == 3: d *= mask st = Util.infomask(d, None, True) d -= st[0] p += periodogram(pad(d, wn, wn, 1, 0.)) p /= n p.write_image(args[1]) elif options.adjpw: if len(args) < 3: ERROR( "filt_by_rops input target output fl aa (the last two are optional parameters of a low-pass filter)", "adjpw", 1) return img_stack = args[0] from math import sqrt from fundamentals import rops_table, fft from utilities import read_text_file, get_im from filter import filt_tanl, filt_table if (args[1][-3:] == 'txt'): rops_dst = read_text_file(args[1]) else: rops_dst = rops_table(get_im(args[1])) out_stack = args[2] if (len(args) > 4): fl = float(args[3]) aa = float(args[4]) else: fl = -1.0 aa = 0.0 nimage = EMUtil.get_image_count(img_stack) for i in xrange(nimage): img = fft(get_im(img_stack, i)) rops_src = rops_table(img) assert len(rops_dst) == len(rops_src) table = [0.0] * len(rops_dst) for j in xrange(len(rops_dst)): table[j] = sqrt(rops_dst[j] / rops_src[j]) if (fl > 0.0): img = filt_tanl(img, fl, aa) img = fft(filt_table(img, table)) img.write_image(out_stack, i) elif options.rotpw != None: if len(args) != 1: ERROR("Only one input permitted", "rotpw", 1) return from utilities import write_text_file, get_im from fundamentals import rops_table from math import log10 t = rops_table(get_im(args[0])) x = range(len(t)) r = [0.0] * len(x) for i in x: r[i] = log10(t[i]) write_text_file([t, r, x], options.rotpw) elif options.transformparams != None: if len(args) != 2: ERROR( "Please provide names of input and output files with orientation parameters", "transformparams", 1) return from utilities import read_text_row, write_text_row transf = [0.0] * 6 spl = options.transformparams.split(',') for i in xrange(len(spl)): transf[i] = float(spl[i]) write_text_row(rotate_shift_params(read_text_row(args[0]), transf), args[1]) elif options.makedb != None: nargs = len(args) if nargs != 1: print "must provide exactly one argument denoting database key under which the input params will be stored" return dbkey = args[0] print "database key under which params will be stored: ", dbkey gbdb = js_open_dict("e2boxercache/gauss_box_DB.json") parmstr = 'dummy:' + options.makedb[0] (processorname, param_dict) = parsemodopt(parmstr) dbdict = {} for pkey in param_dict: if (pkey == 'invert_contrast') or (pkey == 'use_variance'): if param_dict[pkey] == 'True': dbdict[pkey] = True else: dbdict[pkey] = False else: dbdict[pkey] = param_dict[pkey] gbdb[dbkey] = dbdict elif options.generate_projections: nargs = len(args) if nargs != 3: ERROR("Must provide name of input structure(s) from which to generate projections, name of output projection stack, and prefix for output micrographs."\ "sxprocess - generate projections",1) return inpstr = args[0] outstk = args[1] micpref = args[2] parmstr = 'dummy:' + options.generate_projections[0] (processorname, param_dict) = parsemodopt(parmstr) parm_CTF = False parm_format = 'bdb' parm_apix = 2.5 if 'CTF' in param_dict: if param_dict['CTF'] == 'True': parm_CTF = True if 'format' in param_dict: parm_format = param_dict['format'] if 'apix' in param_dict: parm_apix = float(param_dict['apix']) boxsize = 64 if 'boxsize' in param_dict: boxsize = int(param_dict['boxsize']) print "pixel size: ", parm_apix, " format: ", parm_format, " add CTF: ", parm_CTF, " box size: ", boxsize scale_mult = 2500 sigma_add = 1.5 sigma_proj = 30.0 sigma2_proj = 17.5 sigma_gauss = 0.3 sigma_mic = 30.0 sigma2_mic = 17.5 sigma_gauss_mic = 0.3 if 'scale_mult' in param_dict: scale_mult = float(param_dict['scale_mult']) if 'sigma_add' in param_dict: sigma_add = float(param_dict['sigma_add']) if 'sigma_proj' in param_dict: sigma_proj = float(param_dict['sigma_proj']) if 'sigma2_proj' in param_dict: sigma2_proj = float(param_dict['sigma2_proj']) if 'sigma_gauss' in param_dict: sigma_gauss = float(param_dict['sigma_gauss']) if 'sigma_mic' in param_dict: sigma_mic = float(param_dict['sigma_mic']) if 'sigma2_mic' in param_dict: sigma2_mic = float(param_dict['sigma2_mic']) if 'sigma_gauss_mic' in param_dict: sigma_gauss_mic = float(param_dict['sigma_gauss_mic']) from filter import filt_gaussl, filt_ctf from utilities import drop_spider_doc, even_angles, model_gauss, delete_bdb, model_blank, pad, model_gauss_noise, set_params2D, set_params_proj from projection import prep_vol, prgs seed(14567) delta = 29 angles = even_angles(delta, 0.0, 89.9, 0.0, 359.9, "S") nangle = len(angles) modelvol = [] nvlms = EMUtil.get_image_count(inpstr) from utilities import get_im for k in xrange(nvlms): modelvol.append(get_im(inpstr, k)) nx = modelvol[0].get_xsize() if nx != boxsize: ERROR("Requested box dimension does not match dimension of the input model.", \ "sxprocess - generate projections",1) nvol = 10 volfts = [[] for k in xrange(nvlms)] for k in xrange(nvlms): for i in xrange(nvol): sigma = sigma_add + random() # 1.5-2.5 addon = model_gauss(sigma, boxsize, boxsize, boxsize, sigma, sigma, 38, 38, 40) scale = scale_mult * (0.5 + random()) vf, kb = prep_vol(modelvol[k] + scale * addon) volfts[k].append(vf) del vf, modelvol if parm_format == "bdb": stack_data = "bdb:" + outstk delete_bdb(stack_data) else: stack_data = outstk + ".hdf" Cs = 2.0 pixel = parm_apix voltage = 120.0 ampcont = 10.0 ibd = 4096 / 2 - boxsize iprj = 0 width = 240 xstart = 8 + boxsize / 2 ystart = 8 + boxsize / 2 rowlen = 17 from random import randint params = [] for idef in xrange(3, 8): irow = 0 icol = 0 mic = model_blank(4096, 4096) defocus = idef * 0.5 #0.2 if parm_CTF: astampl = defocus * 0.15 astangl = 50.0 ctf = generate_ctf([ defocus, Cs, voltage, pixel, ampcont, 0.0, astampl, astangl ]) for i in xrange(nangle): for k in xrange(12): dphi = 8.0 * (random() - 0.5) dtht = 8.0 * (random() - 0.5) psi = 360.0 * random() phi = angles[i][0] + dphi tht = angles[i][1] + dtht s2x = 4.0 * (random() - 0.5) s2y = 4.0 * (random() - 0.5) params.append([phi, tht, psi, s2x, s2y]) ivol = iprj % nvol #imgsrc = randint(0,nvlms-1) imgsrc = iprj % nvlms proj = prgs(volfts[imgsrc][ivol], kb, [phi, tht, psi, -s2x, -s2y]) x = xstart + irow * width y = ystart + icol * width mic += pad(proj, 4096, 4096, 1, 0.0, x - 2048, y - 2048, 0) proj = proj + model_gauss_noise(sigma_proj, nx, nx) if parm_CTF: proj = filt_ctf(proj, ctf) proj.set_attr_dict({"ctf": ctf, "ctf_applied": 0}) proj = proj + filt_gaussl( model_gauss_noise(sigma2_proj, nx, nx), sigma_gauss) proj.set_attr("origimgsrc", imgsrc) proj.set_attr("test_id", iprj) # flags describing the status of the image (1 = true, 0 = false) set_params2D(proj, [0.0, 0.0, 0.0, 0, 1.0]) set_params_proj(proj, [phi, tht, psi, s2x, s2y]) proj.write_image(stack_data, iprj) icol += 1 if icol == rowlen: icol = 0 irow += 1 iprj += 1 mic += model_gauss_noise(sigma_mic, 4096, 4096) if parm_CTF: #apply CTF mic = filt_ctf(mic, ctf) mic += filt_gaussl(model_gauss_noise(sigma2_mic, 4096, 4096), sigma_gauss_mic) mic.write_image(micpref + "%1d.hdf" % (idef - 3), 0) drop_spider_doc("params.txt", params) elif options.importctf != None: print ' IMPORTCTF ' from utilities import read_text_row, write_text_row from random import randint import subprocess grpfile = 'groupid%04d' % randint(1000, 9999) ctfpfile = 'ctfpfile%04d' % randint(1000, 9999) cterr = [options.defocuserror / 100.0, options.astigmatismerror] ctfs = read_text_row(options.importctf) for kk in xrange(len(ctfs)): root, name = os.path.split(ctfs[kk][-1]) ctfs[kk][-1] = name[:-4] if (options.input[:4] != 'bdb:'): ERROR('Sorry, only bdb files implemented', 'importctf', 1) d = options.input[4:] #try: str = d.index('*') #except: str = -1 from string import split import glob uu = os.path.split(d) uu = os.path.join(uu[0], 'EMAN2DB', uu[1] + '.bdb') flist = glob.glob(uu) for i in xrange(len(flist)): root, name = os.path.split(flist[i]) root = root[:-7] name = name[:-4] fil = 'bdb:' + os.path.join(root, name) sourcemic = EMUtil.get_all_attributes(fil, 'ptcl_source_image') nn = len(sourcemic) gctfp = [] groupid = [] for kk in xrange(nn): junk, name2 = os.path.split(sourcemic[kk]) name2 = name2[:-4] ctfp = [-1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for ll in xrange(len(ctfs)): if (name2 == ctfs[ll][-1]): # found correct if (ctfs[ll][8] / ctfs[ll][0] <= cterr[0]): # acceptable defocus error ctfp = ctfs[ll][:8] if (ctfs[ll][10] > cterr[1]): # error of astigmatism exceed the threshold, set astigmatism to zero. ctfp[6] = 0.0 ctfp[7] = 0.0 gctfp.append(ctfp) groupid.append(kk) break if (len(groupid) > 0): write_text_row(groupid, grpfile) write_text_row(gctfp, ctfpfile) cmd = "{} {} {} {}".format( 'e2bdb.py', fil, '--makevstack=bdb:' + root + 'G' + name, '--list=' + grpfile) #print cmd subprocess.call(cmd, shell=True) cmd = "{} {} {} {}".format('sxheader.py', 'bdb:' + root + 'G' + name, '--params=ctf', '--import=' + ctfpfile) #print cmd subprocess.call(cmd, shell=True) else: print ' >>> Group ', name, ' skipped.' cmd = "{} {} {}".format("rm -f", grpfile, ctfpfile) subprocess.call(cmd, shell=True) elif options.scale > 0.0: from utilities import read_text_row, write_text_row scale = options.scale nargs = len(args) if nargs != 2: print "Please provide names of input and output file!" return p = read_text_row(args[0]) for i in xrange(len(p)): p[i][3] /= scale p[i][4] /= scale write_text_row(p, args[1]) elif options.adaptive_mask: from utilities import get_im from morphology import adaptive_mask nsigma = options.nsigma ndilation = options.ndilation kernel_size = options.kernel_size gauss_standard_dev = options.gauss_standard_dev nargs = len(args) if nargs > 2: print "Too many inputs are given, try again!" return else: inputvol = get_im(args[0]) input_path, input_file_name = os.path.split(args[0]) input_file_name_root, ext = os.path.splitext(input_file_name) if nargs == 2: mask_file_name = args[1] else: mask_file_name = "adaptive_mask_for" + input_file_name_root + ".hdf" # Only hdf file is output. mask3d = adaptive_mask(inputvol, nsigma, ndilation, kernel_size, gauss_standard_dev) mask3d.write_image(mask_file_name) else: ERROR("Please provide option name", "sxprocess.py", 1)
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group", type="int", default=100, help="number of images per group") parser.add_option("--radius", type="int", default=-1, help="radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option( "--iter", type="int", default=30, help="number of iterations within alignment (default = 30)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--thld_err", type="float", default=1.0, help="threshold of pixel error (default = 1.732)") parser.add_option( "--grouping", type="string", default="GRP", help= "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size" ) parser.add_option( "--delta", type="float", default=-1.0, help="angular step for reference projections (required for GEV method)" ) parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx / 2 - 2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta( proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ", myid, " ", len( proj_list_all), time() - st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima / img_per_grp - 1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i % number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ", myid, " ", time() - st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR( "Angular step for reference projections is required for GEV method", "sxproj_stability", 1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin:img_end] del refproj ref_ang = [0.0] * (len(refprojdir) * 2) for i in xrange(len(refprojdir)): ref_ang[i * 2] = refprojdir[0][0] ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1 print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ", myid, " ", time() - st proj_ang = [0.0] * (nima * 2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i * 2] = dp["phi"] proj_ang[i * 2 + 1] = dp["theta"] print " C ", myid, " ", time() - st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp]) del asi print " D ", myid, " ", time() - st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ", myid, " ", time() - st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ", myid, " ", time() - st from utilities import nearest_proj proj_list, mirror_list = nearest_proj( proj_params, img_per_grp, range(img_begin, img_begin + 1)) #range(img_begin, img_end)) refprojdir = proj_params[img_begin:img_end] del proj_params, mirror_list print " D ", myid, " ", time() - st else: ERROR("Incorrect projection grouping option", "sxproj_stability", 1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx, ny)] * len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list) for i in xrange(len(proj_list)): print " E ", myid, " ", time() - st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF: from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize=True, ir=1, ou=radius, rs=1, step=1.0, dst=90.0, maxit=ite, check_mirror=True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend([alpha, sx, sy, mirror]) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1) #print " H ",myid," ",time()-st if (len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj( class_data[j]) if (theta > 90.0): phi = (phi + 540.0) % 360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi * phi vtht += theta * theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l > 1: l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l * aphi * aphi) / l vtht = (vtht - l * atht * atht) / l from math import sqrt refprojdir[i] = [ aphi, atht, (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0 ] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ", i, refprojdir[i] aveList[i].set_attr('members', [-1]) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def ali3d_MPI(stack, ref_vol, outdir, maskfile=None, ir=1, ou=-1, rs=1, xr="4 2 2 1", yr="-1", ts="1 1 0.5 0.25", delta="10 6 4 4", an="-1", center=0, maxit=5, term=95, CTF=False, fourvar=False, snr=1.0, ref_a="S", sym="c1", sort=True, cutoff=999.99, pix_cutoff="0", two_tail=False, model_jump="1 1 1 1 1", restart=False, save_half=False, protos=None, oplane=None, lmask=-1, ilmask=-1, findseam=False, vertstep=None, hpars="-1", hsearch="0.0 50.0", full_output=False, compare_repro=False, compare_ref_free="-1", ref_free_cutoff="-1 -1 -1 -1", wcmask=None, debug=False, recon_pad=4, olmask=75): from alignment import Numrinit, prepare_refrings from utilities import model_circle, get_image, drop_image, get_input_from_string from utilities import bcast_list_to_all, bcast_number_to_all, reduce_EMData_to_root, bcast_EMData_to_all from utilities import send_attr_dict from utilities import get_params_proj, file_type from fundamentals import rot_avg_image import os import types from utilities import print_begin_msg, print_end_msg, print_msg from mpi import mpi_bcast, mpi_comm_size, mpi_comm_rank, MPI_FLOAT, MPI_COMM_WORLD, mpi_barrier, mpi_reduce from mpi import mpi_reduce, MPI_INT, MPI_SUM, mpi_finalize from filter import filt_ctf from projection import prep_vol, prgs from statistics import hist_list, varf3d_MPI, fsc_mask from numpy import array, bincount, array2string, ones number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if myid == main_node: if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "ali3d_MPI", 1) os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) if debug: from time import sleep while not os.path.exists(outdir): print "Node ", myid, " waiting..." sleep(5) info_file = os.path.join(outdir, "progress%04d" % myid) finfo = open(info_file, 'w') else: finfo = None mjump = get_input_from_string(model_jump) xrng = get_input_from_string(xr) if yr == "-1": yrng = xrng else: yrng = get_input_from_string(yr) step = get_input_from_string(ts) delta = get_input_from_string(delta) ref_free_cutoff = get_input_from_string(ref_free_cutoff) pix_cutoff = get_input_from_string(pix_cutoff) lstp = min(len(xrng), len(yrng), len(step), len(delta)) if an == "-1": an = [-1] * lstp else: an = get_input_from_string(an) # make sure pix_cutoff is set for all iterations if len(pix_cutoff) < lstp: for i in xrange(len(pix_cutoff), lstp): pix_cutoff.append(pix_cutoff[-1]) # don't waste time on sub-pixel alignment for low-resolution ang incr for i in range(len(step)): if (delta[i] > 4 or delta[i] == -1) and step[i] < 1: step[i] = 1 first_ring = int(ir) rstep = int(rs) last_ring = int(ou) max_iter = int(maxit) center = int(center) nrefs = EMUtil.get_image_count(ref_vol) nmasks = 0 if maskfile: # read number of masks within each maskfile (mc) nmasks = EMUtil.get_image_count(maskfile) # open masks within maskfile (mc) maskF = EMData.read_images(maskfile, xrange(nmasks)) vol = EMData.read_images(ref_vol, xrange(nrefs)) nx = vol[0].get_xsize() ## make sure box sizes are the same if myid == main_node: im = EMData.read_images(stack, [0]) bx = im[0].get_xsize() if bx != nx: print_msg( "Error: Stack box size (%i) differs from initial model (%i)\n" % (bx, nx)) sys.exit() del im, bx # for helical processing: helicalrecon = False if protos is not None or hpars != "-1" or findseam is True: helicalrecon = True # if no out-of-plane param set, use 5 degrees if oplane is None: oplane = 5.0 if protos is not None: proto = get_input_from_string(protos) if len(proto) != nrefs: print_msg("Error: insufficient protofilament numbers supplied") sys.exit() if hpars != "-1": hpars = get_input_from_string(hpars) if len(hpars) != 2 * nrefs: print_msg("Error: insufficient helical parameters supplied") sys.exit() ## create helical parameter file for helical reconstruction if helicalrecon is True and myid == main_node: from hfunctions import createHpar # create initial helical parameter files dp = [0] * nrefs dphi = [0] * nrefs vdp = [0] * nrefs vdphi = [0] * nrefs for iref in xrange(nrefs): hpar = os.path.join(outdir, "hpar%02d.spi" % (iref)) params = False if hpars != "-1": # if helical parameters explicitly given, set twist & rise params = [float(hpars[iref * 2]), float(hpars[(iref * 2) + 1])] dp[iref], dphi[iref], vdp[iref], vdphi[iref] = createHpar( hpar, proto[iref], params, vertstep) # get values for helical search parameters hsearch = get_input_from_string(hsearch) if len(hsearch) != 2: print_msg("Error: specify outer and inner radii for helical search") sys.exit() if last_ring < 0 or last_ring > int(nx / 2) - 2: last_ring = int(nx / 2) - 2 if myid == main_node: # import user_functions # user_func = user_functions.factory[user_func_name] print_begin_msg("ali3d_MPI") print_msg("Input stack : %s\n" % (stack)) print_msg("Reference volume : %s\n" % (ref_vol)) print_msg("Output directory : %s\n" % (outdir)) if nmasks > 0: print_msg("Maskfile (number of masks) : %s (%i)\n" % (maskfile, nmasks)) print_msg("Inner radius : %i\n" % (first_ring)) print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %s\n" % (xrng)) print_msg("Y search range : %s\n" % (yrng)) print_msg("Translational step : %s\n" % (step)) print_msg("Angular step : %s\n" % (delta)) print_msg("Angular search range : %s\n" % (an)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("Center type : %i\n" % (center)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Reference projection method : %s\n" % (ref_a)) print_msg("Symmetry group : %s\n" % (sym)) print_msg("Fourier padding for 3D : %i\n" % (recon_pad)) print_msg("Number of reference models : %i\n" % (nrefs)) print_msg("Sort images between models : %s\n" % (sort)) print_msg("Allow images to jump : %s\n" % (mjump)) print_msg("CC cutoff standard dev : %f\n" % (cutoff)) print_msg("Two tail cutoff : %s\n" % (two_tail)) print_msg("Termination pix error : %f\n" % (term)) print_msg("Pixel error cutoff : %s\n" % (pix_cutoff)) print_msg("Restart : %s\n" % (restart)) print_msg("Full output : %s\n" % (full_output)) print_msg("Compare reprojections : %s\n" % (compare_repro)) print_msg("Compare ref free class avgs : %s\n" % (compare_ref_free)) print_msg("Use cutoff from ref free : %s\n" % (ref_free_cutoff)) if protos: print_msg("Protofilament numbers : %s\n" % (proto)) print_msg("Using helical search range : %s\n" % hsearch) if findseam is True: print_msg("Using seam-based reconstruction\n") if hpars != "-1": print_msg("Using hpars : %s\n" % hpars) if vertstep != None: print_msg("Using vertical step : %.2f\n" % vertstep) if save_half is True: print_msg("Saving even/odd halves\n") for i in xrange(100): print_msg("*") print_msg("\n\n") if maskfile: if type(maskfile) is types.StringType: mask3D = get_image(maskfile) else: mask3D = maskfile else: mask3D = model_circle(last_ring, nx, nx, nx) numr = Numrinit(first_ring, last_ring, rstep, "F") mask2D = model_circle(last_ring, nx, nx) - model_circle(first_ring, nx, nx) fscmask = model_circle(last_ring, nx, nx, nx) if CTF: from filter import filt_ctf from reconstruction_rjh import rec3D_MPI_noCTF if myid == main_node: active = EMUtil.get_all_attributes(stack, 'active') list_of_particles = [] for im in xrange(len(active)): if active[im]: list_of_particles.append(im) del active nima = len(list_of_particles) else: nima = 0 total_nima = bcast_number_to_all(nima, source_node=main_node) if myid != main_node: list_of_particles = [-1] * total_nima list_of_particles = bcast_list_to_all(list_of_particles, source_node=main_node) image_start, image_end = MPI_start_end(total_nima, number_of_proc, myid) # create a list of images for each node list_of_particles = list_of_particles[image_start:image_end] nima = len(list_of_particles) if debug: finfo.write("image_start, image_end: %d %d\n" % (image_start, image_end)) finfo.flush() data = EMData.read_images(stack, list_of_particles) t_zero = Transform({ "type": "spider", "phi": 0, "theta": 0, "psi": 0, "tx": 0, "ty": 0 }) transmulti = [[t_zero for i in xrange(nrefs)] for j in xrange(nima)] for iref, im in ((iref, im) for iref in xrange(nrefs) for im in xrange(nima)): if nrefs == 1: transmulti[im][iref] = data[im].get_attr("xform.projection") else: # if multi models, keep track of eulers for all models try: transmulti[im][iref] = data[im].get_attr("eulers_txty.%i" % iref) except: data[im].set_attr("eulers_txty.%i" % iref, t_zero) scoremulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] pixelmulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] ref_res = [0.0 for x in xrange(nrefs)] apix = data[0].get_attr('apix_x') # for oplane parameter, create cylindrical mask if oplane is not None and myid == main_node: from hfunctions import createCylMask cmaskf = os.path.join(outdir, "mask3D_cyl.mrc") mask3D = createCylMask(data, olmask, lmask, ilmask, cmaskf) # if finding seam of helix, create wedge masks if findseam is True: wedgemask = [] for pf in xrange(nrefs): wedgemask.append(EMData()) # wedgemask option if wcmask is not None: wcmask = get_input_from_string(wcmask) if len(wcmask) != 3: print_msg( "Error: wcmask option requires 3 values: x y radius") sys.exit() # determine if particles have helix info: try: data[0].get_attr('h_angle') original_data = [] boxmask = True from hfunctions import createBoxMask except: boxmask = False # prepare particles for im in xrange(nima): data[im].set_attr('ID', list_of_particles[im]) data[im].set_attr('pix_score', int(0)) if CTF: # only phaseflip particles, not full CTF correction ctf_params = data[im].get_attr("ctf") st = Util.infomask(data[im], mask2D, False) data[im] -= st[0] data[im] = filt_ctf(data[im], ctf_params, sign=-1, binary=1) data[im].set_attr('ctf_applied', 1) # for window mask: if boxmask is True: h_angle = data[im].get_attr("h_angle") original_data.append(data[im].copy()) bmask = createBoxMask(nx, apix, ou, lmask, h_angle) data[im] *= bmask del bmask if debug: finfo.write('%d loaded \n' % nima) finfo.flush() if myid == main_node: # initialize data for the reference preparation function ref_data = [mask3D, max(center, 0), None, None, None, None] # for method -1, switch off centering in user function from time import time # this is needed for gathering of pixel errors disps = [] recvcount = [] disps_score = [] recvcount_score = [] for im in xrange(number_of_proc): if (im == main_node): disps.append(0) disps_score.append(0) else: disps.append(disps[im - 1] + recvcount[im - 1]) disps_score.append(disps_score[im - 1] + recvcount_score[im - 1]) ib, ie = MPI_start_end(total_nima, number_of_proc, im) recvcount.append(ie - ib) recvcount_score.append((ie - ib) * nrefs) pixer = [0.0] * nima cs = [0.0] * 3 total_iter = 0 volodd = EMData.read_images(ref_vol, xrange(nrefs)) voleve = EMData.read_images(ref_vol, xrange(nrefs)) if restart: # recreate initial volumes from alignments stored in header itout = "000_00" for iref in xrange(nrefs): if (nrefs == 1): modout = "" else: modout = "_model_%02d" % (iref) if (sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection', transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection', transmulti[im][iref]) fscfile = os.path.join(outdir, "fsc_%s%s" % (itout, modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF( data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep = None if vertstep is not None: vstep = (vdp[iref], vdphi[iref]) print_msg( "Old rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) hvals = processHelicalVol(vol[iref], voleve[iref], volodd[iref], iref, outdir, itout, dp[iref], dphi[iref], apix, hsearch, findseam, vstep, wcmask) (vol[iref], voleve[iref], volodd[iref], dp[iref], dphi[iref], vdp[iref], vdphi[iref]) = hvals print_msg( "New rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask(volodd[iref], voleve[iref], mask3D, rstep, fscfile) else: vol[iref].write_image( os.path.join(outdir, "vol_%s.hdf" % itout), -1) if save_half is True: volodd[iref].write_image( os.path.join(outdir, "volodd_%s.hdf" % itout), -1) voleve[iref].write_image( os.path.join(outdir, "voleve_%s.hdf" % itout), -1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs, fl = ref_ali3d(ref_data) vol[iref].write_image( os.path.join(outdir, "volf_%s.hdf" % (itout)), -1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res = fl else: res_msg = "Models filtered at resolution of: \t" res = apix / fl ares = array2string(array(res), precision=2) print_msg("%s%s\n\n" % (res_msg, ares)) bcast_EMData_to_all(vol[iref], myid, main_node) # write out headers, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) # projection matching for N_step in xrange(lstp): terminate = 0 Iter = -1 while (Iter < max_iter - 1 and terminate == 0): Iter += 1 total_iter += 1 itout = "%03g_%02d" % (delta[N_step], Iter) if myid == main_node: print_msg( "ITERATION #%3d, inner iteration #%3d\nDelta = %4.1f, an = %5.2f, xrange = %5.2f, yrange = %5.2f, step = %5.2f\n\n" % (N_step, Iter, delta[N_step], an[N_step], xrng[N_step], yrng[N_step], step[N_step])) for iref in xrange(nrefs): if myid == main_node: start_time = time() volft, kb = prep_vol(vol[iref]) ## constrain projections to out of plane parameter theta1 = None theta2 = None if oplane is not None: theta1 = 90 - oplane theta2 = 90 + oplane refrings = prepare_refrings(volft, kb, nx, delta[N_step], ref_a, sym, numr, MPI=True, phiEqpsi="Minus", initial_theta=theta1, delta_theta=theta2) del volft, kb if myid == main_node: print_msg( "Time to prepare projections for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() for im in xrange(nima): data[im].set_attr("xform.projection", transmulti[im][iref]) if an[N_step] == -1: t1, peak, pixer[im] = proj_ali_incore( data[im], refrings, numr, xrng[N_step], yrng[N_step], step[N_step], finfo) else: t1, peak, pixer[im] = proj_ali_incore_local( data[im], refrings, numr, xrng[N_step], yrng[N_step], step[N_step], an[N_step], finfo) #data[im].set_attr("xform.projection"%iref, t1) if nrefs > 1: data[im].set_attr("eulers_txty.%i" % iref, t1) scoremulti[im][iref] = peak from pixel_error import max_3D_pixel_error # t1 is the current param, t2 is old t2 = transmulti[im][iref] pixelmulti[im][iref] = max_3D_pixel_error(t1, t2, numr[-3]) transmulti[im][iref] = t1 if myid == main_node: print_msg("Time of alignment for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() # gather scoring data from all processors from mpi import mpi_gatherv scoremultisend = sum(scoremulti, []) pixelmultisend = sum(pixelmulti, []) tmp = mpi_gatherv(scoremultisend, len(scoremultisend), MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node, MPI_COMM_WORLD) tmp1 = mpi_gatherv(pixelmultisend, len(pixelmultisend), MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node, MPI_COMM_WORLD) tmp = mpi_bcast(tmp, (total_nima * nrefs), MPI_FLOAT, 0, MPI_COMM_WORLD) tmp1 = mpi_bcast(tmp1, (total_nima * nrefs), MPI_FLOAT, 0, MPI_COMM_WORLD) tmp = map(float, tmp) tmp1 = map(float, tmp1) score = array(tmp).reshape(-1, nrefs) pixelerror = array(tmp1).reshape(-1, nrefs) score_local = array(scoremulti) mean_score = score.mean(axis=0) std_score = score.std(axis=0) cut = mean_score - (cutoff * std_score) cut2 = mean_score + (cutoff * std_score) res_max = score_local.argmax(axis=1) minus_cc = [0.0 for x in xrange(nrefs)] minus_pix = [0.0 for x in xrange(nrefs)] minus_ref = [0.0 for x in xrange(nrefs)] #output pixel errors if (myid == main_node): from statistics import hist_list lhist = 20 pixmin = pixelerror.min(axis=1) region, histo = hist_list(pixmin, lhist) if (region[0] < 0.0): region[0] = 0.0 print_msg( "Histogram of pixel errors\n ERROR number of particles\n" ) for lhx in xrange(lhist): print_msg(" %10.3f %7d\n" % (region[lhx], histo[lhx])) # Terminate if 95% within 1 pixel error im = 0 for lhx in xrange(lhist): if (region[lhx] > 1.0): break im += histo[lhx] print_msg("Percent of particles with pixel error < 1: %f\n\n" % (im / float(total_nima) * 100)) term_cond = float(term) / 100 if (im / float(total_nima) > term_cond): terminate = 1 print_msg("Terminating internal loop\n") del region, histo terminate = mpi_bcast(terminate, 1, MPI_INT, 0, MPI_COMM_WORLD) terminate = int(terminate[0]) for im in xrange(nima): if (sort == False): data[im].set_attr('group', 999) elif (mjump[N_step] == 1): data[im].set_attr('group', int(res_max[im])) pix_run = data[im].get_attr('pix_score') if (pix_cutoff[N_step] == 1 and (terminate == 1 or Iter == max_iter - 1)): if (pixelmulti[im][int(res_max[im])] > 1): data[im].set_attr('pix_score', int(777)) if (score_local[im][int(res_max[im])] < cut[int( res_max[im])]) or (two_tail and score_local[im][int( res_max[im])] > cut2[int(res_max[im])]): data[im].set_attr('group', int(888)) minus_cc[int(res_max[im])] = minus_cc[int(res_max[im])] + 1 if (pix_run == 777): data[im].set_attr('group', int(777)) minus_pix[int( res_max[im])] = minus_pix[int(res_max[im])] + 1 if (compare_ref_free != "-1") and (ref_free_cutoff[N_step] != -1) and (total_iter > 1): id = data[im].get_attr('ID') if id in rejects: data[im].set_attr('group', int(666)) minus_ref[int( res_max[im])] = minus_ref[int(res_max[im])] + 1 minus_cc_tot = mpi_reduce(minus_cc, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) minus_pix_tot = mpi_reduce(minus_pix, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) minus_ref_tot = mpi_reduce(minus_ref, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) if (myid == main_node): if (sort): tot_max = score.argmax(axis=1) res = bincount(tot_max) else: res = ones(nrefs) * total_nima print_msg("Particle distribution: \t\t%s\n" % (res * 1.0)) afcut1 = res - minus_cc_tot afcut2 = afcut1 - minus_pix_tot afcut3 = afcut2 - minus_ref_tot print_msg("Particle distribution after cc cutoff:\t\t%s\n" % (afcut1)) print_msg("Particle distribution after pix cutoff:\t\t%s\n" % (afcut2)) print_msg("Particle distribution after ref cutoff:\t\t%s\n\n" % (afcut3)) res = [0.0 for i in xrange(nrefs)] for iref in xrange(nrefs): if (center == -1): from utilities import estimate_3D_center_MPI, rotate_3D_shift dummy = EMData() cs[0], cs[1], cs[2], dummy, dummy = estimate_3D_center_MPI( data, total_nima, myid, number_of_proc, main_node) cs = mpi_bcast(cs, 3, MPI_FLOAT, main_node, MPI_COMM_WORLD) cs = [-float(cs[0]), -float(cs[1]), -float(cs[2])] rotate_3D_shift(data, cs) if (sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection', transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection', transmulti[im][iref]) if (nrefs == 1): modout = "" else: modout = "_model_%02d" % (iref) fscfile = os.path.join(outdir, "fsc_%s%s" % (itout, modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF( data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: print_msg("3D reconstruction time for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() # Compute Fourier variance if fourvar: outvar = os.path.join(outdir, "volVar_%s.hdf" % (itout)) ssnr_file = os.path.join(outdir, "ssnr_%s" % (itout)) varf = varf3d_MPI(data, ssnr_text_file=ssnr_file, mask2D=None, reference_structure=vol[iref], ou=last_ring, rw=1.0, npad=1, CTF=None, sign=1, sym=sym, myid=myid) if myid == main_node: print_msg( "Time to calculate 3D Fourier variance for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() varf = 1.0 / varf varf.write_image(outvar, -1) else: varf = None if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep = None if vertstep is not None: vstep = (vdp[iref], vdphi[iref]) print_msg( "Old rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) hvals = processHelicalVol(vol[iref], voleve[iref], volodd[iref], iref, outdir, itout, dp[iref], dphi[iref], apix, hsearch, findseam, vstep, wcmask) (vol[iref], voleve[iref], volodd[iref], dp[iref], dphi[iref], vdp[iref], vdphi[iref]) = hvals print_msg( "New rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask(volodd[iref], voleve[iref], mask3D, rstep, fscfile) print_msg( "Time to search and apply helical symmetry for model %i: %s\n\n" % (iref, legibleTime(time() - start_time))) start_time = time() else: vol[iref].write_image( os.path.join(outdir, "vol_%s.hdf" % (itout)), -1) if save_half is True: volodd[iref].write_image( os.path.join(outdir, "volodd_%s.hdf" % (itout)), -1) voleve[iref].write_image( os.path.join(outdir, "voleve_%s.hdf" % (itout)), -1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc ref_data[4] = varf # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs, fl = ref_ali3d(ref_data) vol[iref].write_image( os.path.join(outdir, "volf_%s.hdf" % (itout)), -1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res[iref] = fl else: res_msg = "Models filtered at resolution of: \t" res[iref] = apix / fl del varf bcast_EMData_to_all(vol[iref], myid, main_node) if compare_ref_free != "-1": compare_repro = True if compare_repro: outfile_repro = comp_rep(refrings, data, itout, modout, vol[iref], group, nima, nx, myid, main_node, outdir) mpi_barrier(MPI_COMM_WORLD) if compare_ref_free != "-1": ref_free_output = os.path.join( outdir, "ref_free_%s%s" % (itout, modout)) rejects = compare(compare_ref_free, outfile_repro, ref_free_output, yrng[N_step], xrng[N_step], rstep, nx, apix, ref_free_cutoff[N_step], number_of_proc, myid, main_node) # retrieve alignment params from all processors par_str = ['xform.projection', 'ID', 'group'] if nrefs > 1: for iref in xrange(nrefs): par_str.append('eulers_txty.%i' % iref) if myid == main_node: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: ares = array2string(array(res), precision=2) print_msg("%s%s\n\n" % (res_msg, ares)) dummy = EMData() if full_output: nimat = EMUtil.get_image_count(stack) output_file = os.path.join(outdir, "paramout_%s" % itout) foutput = open(output_file, 'w') for im in xrange(nimat): # save the parameters for each of the models outstring = "" dummy.read_image(stack, im, True) param3d = dummy.get_attr('xform.projection') g = dummy.get_attr("group") # retrieve alignments in EMAN-format pE = param3d.get_params('eman') outstring += "%f\t%f\t%f\t%f\t%f\t%i\n" % ( pE["az"], pE["alt"], pE["phi"], pE["tx"], pE["ty"], g) foutput.write(outstring) foutput.close() del dummy mpi_barrier(MPI_COMM_WORLD) # mpi_finalize() if myid == main_node: print_end_msg("ali3d_MPI")
def main(): import sys import os import math import random import pyemtbx.options import time from random import random, seed, randint from optparse import OptionParser progname = os.path.basename(sys.argv[0]) usage = progname + """ [options] <inputfile> <outputfile> Generic 2-D image processing programs. Functionality: 1. Phase flip a stack of images and write output to new file: sxprocess.py input_stack.hdf output_stack.hdf --phase_flip 2. Resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size. The window size will change accordingly. sxprocess input.hdf output.hdf --changesize --ratio=0.5 3. Compute average power spectrum of a stack of 2D images with optional padding (option wn) with zeroes or a 3-D volume. sxprocess.py input_stack.hdf powerspectrum.hdf --pw [--wn=1024] 4. Generate a stack of projections bdb:data and micrographs with prefix mic (i.e., mic0.hdf, mic1.hdf etc) from structure input_structure.hdf, with CTF applied to both projections and micrographs: sxprocess.py input_structure.hdf data mic --generate_projections format="bdb":apix=5.2:CTF=True:boxsize=64 5. Retrieve original image numbers in the selected ISAC group (here group 12 from generation 3): sxprocess.py bdb:test3 class_averages_generation_3.hdf list3_12.txt --isacgroup=12 --params=originalid 6. Retrieve original image numbers of images listed in ISAC output stack of averages: sxprocess.py select1.hdf ohk.txt 7. Adjust rotationally averaged power spectrum of an image to that of a reference image or a reference 1D power spectrum stored in an ASCII file. Optionally use a tangent low-pass filter. Also works for a stack of images, in which case the output is also a stack. sxprocess.py vol.hdf ref.hdf avol.hdf < 0.25 0.2> --adjpw sxprocess.py vol.hdf pw.txt avol.hdf < 0.25 0.2> --adjpw 8. Generate a 1D rotationally averaged power spectrum of an image. sxprocess.py vol.hdf --rotwp=rotpw.txt # Output will contain three columns: (1) rotationally averaged power spectrum (2) logarithm of the rotationally averaged power spectrum (3) integer line number (from zero to approximately to half the image size) 9. Apply 3D transformation (rotation and/or shift) to a set of orientation parameters associated with projection data. sxprocess.py --transfromparams=phi,theta,psi,tx,ty,tz input.txt output.txt The output file is then imported and 3D transformed volume computed: sxheader.py bdb:p --params=xform.projection --import=output.txt mpirun -np 2 sxrecons3d_n.py bdb:p tvol.hdf --MPI The reconstructed volume is in the position of the volume computed using the input.txt parameters and then transformed with rot_shift3D(vol, phi,theta,psi,tx,ty,tz) 10. Import ctf parameters from the output of sxcter into windowed particle headers. There are three possible input files formats: (1) all particles are in one stack, (2 aor 3) particles are in stacks, each stack corresponds to a single micrograph. In each case the particles should contain a name of the micrograph of origin stores using attribute name 'ptcl_source_image'. Normally this is done by e2boxer.py during windowing. Particles whose defocus or astigmatism error exceed set thresholds will be skipped, otherwise, virtual stacks with the original way preceded by G will be created. sxprocess.py --input=bdb:data --importctf=outdir/partres --defocuserror=10.0 --astigmatismerror=5.0 # Output will be a vritual stack bdb:Gdata sxprocess.py --input="bdb:directory/stacks*" --importctf=outdir/partres --defocuserror=10.0 --astigmatismerror=5.0 To concatenate output files: cd directory e2bdb.py . --makevstack=bdb:allparticles --filt=G IMPORTANT: Please do not move (or remove!) any input/intermediate EMAN2DB files as the information is linked between them. 11. Scale 3D shifts. The shifts in the input five columns text file with 3D orientation parameters will be DIVIDED by the scale factor sxprocess.py orientationparams.txt scaledparams.txt scale=0.5 12. Generate 3D mask from a given 3-D volume automatically or using threshold provided by user. 13. Postprocess 3-D or 2-D images: for 3-D volumes: calculate FSC with provided mask; weight summed volume with FSC; estimate B-factor from FSC weighted summed two volumes; apply negative B-factor to the weighted volume. for 2-D images: calculate B-factor and apply negative B-factor to 2-D images. 14. Winow stack file -reduce size of images without changing the pixel size. """ parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--order", action="store_true", help="Two arguments are required: name of input stack and desired name of output stack. The output stack is the input stack sorted by similarity in terms of cross-correlation coefficent.", default=False) parser.add_option("--order_lookup", action="store_true", help="Test/Debug.", default=False) parser.add_option("--order_metropolis", action="store_true", help="Test/Debug.", default=False) parser.add_option("--order_pca", action="store_true", help="Test/Debug.", default=False) parser.add_option("--initial", type="int", default=-1, help="Specifies which image will be used as an initial seed to form the chain. (default = 0, means the first image)") parser.add_option("--circular", action="store_true", help="Select circular ordering (fisr image has to be similar to the last", default=False) parser.add_option("--radius", type="int", default=-1, help="Radius of a circular mask for similarity based ordering") parser.add_option("--changesize", action="store_true", help="resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size.", default=False) parser.add_option("--ratio", type="float", default=1.0, help="The ratio of new to old image size (if <1 the pixel size will increase and image size decrease, if>1, the other way round") parser.add_option("--pw", action="store_true", help="compute average power spectrum of a stack of 2-D images with optional padding (option wn) with zeroes", default=False) parser.add_option("--wn", type="int", default=-1, help="Size of window to use (should be larger/equal than particle box size, default padding to max(nx,ny))") parser.add_option("--phase_flip", action="store_true", help="Phase flip the input stack", default=False) parser.add_option("--makedb", metavar="param1=value1:param2=value2", type="string", action="append", help="One argument is required: name of key with which the database will be created. Fill in database with parameters specified as follows: --makedb param1=value1:param2=value2, e.g. 'gauss_width'=1.0:'pixel_input'=5.2:'pixel_output'=5.2:'thr_low'=1.0") parser.add_option("--generate_projections", metavar="param1=value1:param2=value2", type="string", action="append", help="Three arguments are required: name of input structure from which to generate projections, desired name of output projection stack, and desired prefix for micrographs (e.g. if prefix is 'mic', then micrographs mic0.hdf, mic1.hdf etc will be generated). Optional arguments specifying format, apix, box size and whether to add CTF effects can be entered as follows after --generate_projections: format='bdb':apix=5.2:CTF=True:boxsize=100, or format='hdf', etc., where format is bdb or hdf, apix (pixel size) is a float, CTF is True or False, and boxsize denotes the dimension of the box (assumed to be a square). If an optional parameter is not specified, it will default as follows: format='bdb', apix=2.5, CTF=False, boxsize=64.") parser.add_option("--isacgroup", type="int", help="Retrieve original image numbers in the selected ISAC group. See ISAC documentation for details.", default=-1) parser.add_option("--isacselect", action="store_true", help="Retrieve original image numbers of images listed in ISAC output stack of averages. See ISAC documentation for details.", default=False) parser.add_option("--params", type="string", default=None, help="Name of header of parameter, which one depends on specific option") parser.add_option("--adjpw", action="store_true", help="Adjust rotationally averaged power spectrum of an image", default=False) parser.add_option("--rotpw", type="string", default=None, help="Name of the text file to contain rotationally averaged power spectrum of the input image.") parser.add_option("--transformparams", type="string", default=None, help="Transform 3D projection orientation parameters using six 3D parameters (phi, theta,psi,sx,sy,sz). Input: --transformparams=45.,66.,12.,-2,3,-5.5 desired six transformation of the reconstructed structure. Output: file with modified orientation parameters.") # import ctf estimates done using cter parser.add_option("--input", type="string", default= None, help="Input particles.") parser.add_option("--importctf", type="string", default= None, help="Name of the file containing CTF parameters produced by sxcter.") parser.add_option("--defocuserror", type="float", default=1000000.0, help="Exclude micrographs whose relative defocus error as estimated by sxcter is larger than defocuserror percent. The error is computed as (std dev defocus)/defocus*100%") parser.add_option("--astigmatismerror", type="float", default=360.0, help="Set to zero astigmatism for micrographs whose astigmatism angular error as estimated by sxcter is larger than astigmatismerror degrees.") # import ctf estimates done using cter parser.add_option("--scale", type="float", default=-1.0, help="Divide shifts in the input 3D orientation parameters text file by the scale factor.") # generate adaptive mask from an given 3-D volume parser.add_option("--adaptive_mask", action="store_true", help="create adavptive 3-D mask from a given volume", default=False) parser.add_option("--nsigma", type="float", default= 1., help="number of times of sigma of the input volume to obtain the the large density cluster") parser.add_option("--ndilation", type="int", default= 3, help="number of times of dilation applied to the largest cluster of density") parser.add_option("--kernel_size", type="int", default= 11, help="convolution kernel for smoothing the edge of the mask") parser.add_option("--gauss_standard_dev", type="int", default= 9, help="stanadard deviation value to generate Gaussian edge") parser.add_option("--threshold", type="float", default= 9999., help="threshold provided by user to binarize input volume") parser.add_option("--ne", type="int", default= 0, help="number of times to erode the binarized input image") parser.add_option("--nd", type="int", default= 0, help="number of times to dilate the binarized input image") parser.add_option("--postprocess", action="store_true", help="postprocess unfiltered odd, even 3-D volumes",default=False) parser.add_option("--fsc_weighted", action="store_true", help="postprocess unfiltered odd, even 3-D volumes") parser.add_option("--low_pass_filter", action="store_true", default=False, help="postprocess unfiltered odd, even 3-D volumes") parser.add_option("--ff", type="float", default=.25, help="low pass filter stop band frequency in absolute unit") parser.add_option("--aa", type="float", default=.1, help="low pass filter falloff" ) parser.add_option("--mask", type="string", help="input mask file", default=None) parser.add_option("--output", type="string", help="output file name", default="postprocessed.hdf") parser.add_option("--pixel_size", type="float", help="pixel size of the data", default=1.0) parser.add_option("--B_start", type="float", help="starting frequency in Angstrom for B-factor estimation", default=10.) parser.add_option("--FSC_cutoff", type="float", help="stop frequency in Angstrom for B-factor estimation", default=0.143) parser.add_option("--2d", action="store_true", help="postprocess isac 2-D averaged images",default=False) parser.add_option("--window_stack", action="store_true", help="window stack images using a smaller window size", default=False) parser.add_option("--box", type="int", default= 0, help="the new window size ") (options, args) = parser.parse_args() global_def.BATCH = True if options.phase_flip: nargs = len(args) if nargs != 2: print "must provide name of input and output file!" return from EMAN2 import Processor instack = args[0] outstack = args[1] nima = EMUtil.get_image_count(instack) from filter import filt_ctf for i in xrange(nima): img = EMData() img.read_image(instack, i) try: ctf = img.get_attr('ctf') except: print "no ctf information in input stack! Exiting..." return dopad = True sign = 1 binary = 1 # phase flip assert img.get_ysize() > 1 dict = ctf.to_dict() dz = dict["defocus"] cs = dict["cs"] voltage = dict["voltage"] pixel_size = dict["apix"] b_factor = dict["bfactor"] ampcont = dict["ampcont"] dza = dict["dfdiff"] azz = dict["dfang"] if dopad and not img.is_complex(): ip = 1 else: ip = 0 params = {"filter_type": Processor.fourier_filter_types.CTF_, "defocus" : dz, "Cs": cs, "voltage": voltage, "Pixel_size": pixel_size, "B_factor": b_factor, "amp_contrast": ampcont, "dopad": ip, "binary": binary, "sign": sign, "dza": dza, "azz":azz} tmp = Processor.EMFourierFilter(img, params) tmp.set_attr_dict({"ctf": ctf}) tmp.write_image(outstack, i) elif options.changesize: nargs = len(args) if nargs != 2: ERROR("must provide name of input and output file!", "change size", 1) return from utilities import get_im instack = args[0] outstack = args[1] sub_rate = float(options.ratio) nima = EMUtil.get_image_count(instack) from fundamentals import resample for i in xrange(nima): resample(get_im(instack, i), sub_rate).write_image(outstack, i) elif options.isacgroup>-1: nargs = len(args) if nargs != 3: ERROR("Three files needed on input!", "isacgroup", 1) return from utilities import get_im instack = args[0] m=get_im(args[1],int(options.isacgroup)).get_attr("members") l = [] for k in m: l.append(int(get_im(args[0],k).get_attr(options.params))) from utilities import write_text_file write_text_file(l, args[2]) elif options.isacselect: nargs = len(args) if nargs != 2: ERROR("Two files needed on input!", "isacgroup", 1) return from utilities import get_im nima = EMUtil.get_image_count(args[0]) m = [] for k in xrange(nima): m += get_im(args[0],k).get_attr("members") m.sort() from utilities import write_text_file write_text_file(m, args[1]) elif options.pw: nargs = len(args) if nargs < 2: ERROR("must provide name of input and output file!", "pw", 1) return from utilities import get_im, write_text_file from fundamentals import rops_table d = get_im(args[0]) ndim = d.get_ndim() if ndim ==3: pw = rops_table(d) write_text_file(pw, args[1]) else: nx = d.get_xsize() ny = d.get_ysize() if nargs ==3: mask = get_im(args[2]) wn = int(options.wn) if wn == -1: wn = max(nx, ny) else: if( (wn<nx) or (wn<ny) ): ERROR("window size cannot be smaller than the image size","pw",1) n = EMUtil.get_image_count(args[0]) from utilities import model_blank, model_circle, pad from EMAN2 import periodogram p = model_blank(wn,wn) for i in xrange(n): d = get_im(args[0], i) if nargs==3: d *=mask st = Util.infomask(d, None, True) d -= st[0] p += periodogram(pad(d, wn, wn, 1, 0.)) p /= n p.write_image(args[1]) elif options.adjpw: if len(args) < 3: ERROR("filt_by_rops input target output fl aa (the last two are optional parameters of a low-pass filter)","adjpw",1) return img_stack = args[0] from math import sqrt from fundamentals import rops_table, fft from utilities import read_text_file, get_im from filter import filt_tanl, filt_table if( args[1][-3:] == 'txt'): rops_dst = read_text_file( args[1] ) else: rops_dst = rops_table(get_im( args[1] )) out_stack = args[2] if(len(args) >4): fl = float(args[3]) aa = float(args[4]) else: fl = -1.0 aa = 0.0 nimage = EMUtil.get_image_count( img_stack ) for i in xrange(nimage): img = fft(get_im(img_stack, i) ) rops_src = rops_table(img) assert len(rops_dst) == len(rops_src) table = [0.0]*len(rops_dst) for j in xrange( len(rops_dst) ): table[j] = sqrt( rops_dst[j]/rops_src[j] ) if( fl > 0.0): img = filt_tanl(img, fl, aa) img = fft(filt_table(img, table)) img.write_image(out_stack, i) elif options.rotpw != None: if len(args) != 1: ERROR("Only one input permitted","rotpw",1) return from utilities import write_text_file, get_im from fundamentals import rops_table from math import log10 t = rops_table(get_im(args[0])) x = range(len(t)) r = [0.0]*len(x) for i in x: r[i] = log10(t[i]) write_text_file([t,r,x],options.rotpw) elif options.transformparams != None: if len(args) != 2: ERROR("Please provide names of input and output files with orientation parameters","transformparams",1) return from utilities import read_text_row, write_text_row transf = [0.0]*6 spl=options.transformparams.split(',') for i in xrange(len(spl)): transf[i] = float(spl[i]) write_text_row( rotate_shift_params(read_text_row(args[0]), transf) , args[1]) elif options.makedb != None: nargs = len(args) if nargs != 1: print "must provide exactly one argument denoting database key under which the input params will be stored" return dbkey = args[0] print "database key under which params will be stored: ", dbkey gbdb = js_open_dict("e2boxercache/gauss_box_DB.json") parmstr = 'dummy:'+options.makedb[0] (processorname, param_dict) = parsemodopt(parmstr) dbdict = {} for pkey in param_dict: if (pkey == 'invert_contrast') or (pkey == 'use_variance'): if param_dict[pkey] == 'True': dbdict[pkey] = True else: dbdict[pkey] = False else: dbdict[pkey] = param_dict[pkey] gbdb[dbkey] = dbdict elif options.generate_projections: nargs = len(args) if nargs != 3: ERROR("Must provide name of input structure(s) from which to generate projections, name of output projection stack, and prefix for output micrographs."\ "sxprocess - generate projections",1) return inpstr = args[0] outstk = args[1] micpref = args[2] parmstr = 'dummy:'+options.generate_projections[0] (processorname, param_dict) = parsemodopt(parmstr) parm_CTF = False parm_format = 'bdb' parm_apix = 2.5 if 'CTF' in param_dict: if param_dict['CTF'] == 'True': parm_CTF = True if 'format' in param_dict: parm_format = param_dict['format'] if 'apix' in param_dict: parm_apix = float(param_dict['apix']) boxsize = 64 if 'boxsize' in param_dict: boxsize = int(param_dict['boxsize']) print "pixel size: ", parm_apix, " format: ", parm_format, " add CTF: ", parm_CTF, " box size: ", boxsize scale_mult = 2500 sigma_add = 1.5 sigma_proj = 30.0 sigma2_proj = 17.5 sigma_gauss = 0.3 sigma_mic = 30.0 sigma2_mic = 17.5 sigma_gauss_mic = 0.3 if 'scale_mult' in param_dict: scale_mult = float(param_dict['scale_mult']) if 'sigma_add' in param_dict: sigma_add = float(param_dict['sigma_add']) if 'sigma_proj' in param_dict: sigma_proj = float(param_dict['sigma_proj']) if 'sigma2_proj' in param_dict: sigma2_proj = float(param_dict['sigma2_proj']) if 'sigma_gauss' in param_dict: sigma_gauss = float(param_dict['sigma_gauss']) if 'sigma_mic' in param_dict: sigma_mic = float(param_dict['sigma_mic']) if 'sigma2_mic' in param_dict: sigma2_mic = float(param_dict['sigma2_mic']) if 'sigma_gauss_mic' in param_dict: sigma_gauss_mic = float(param_dict['sigma_gauss_mic']) from filter import filt_gaussl, filt_ctf from utilities import drop_spider_doc, even_angles, model_gauss, delete_bdb, model_blank,pad,model_gauss_noise,set_params2D, set_params_proj from projection import prep_vol,prgs seed(14567) delta = 29 angles = even_angles(delta, 0.0, 89.9, 0.0, 359.9, "S") nangle = len(angles) modelvol = [] nvlms = EMUtil.get_image_count(inpstr) from utilities import get_im for k in xrange(nvlms): modelvol.append(get_im(inpstr,k)) nx = modelvol[0].get_xsize() if nx != boxsize: ERROR("Requested box dimension does not match dimension of the input model.", \ "sxprocess - generate projections",1) nvol = 10 volfts = [[] for k in xrange(nvlms)] for k in xrange(nvlms): for i in xrange(nvol): sigma = sigma_add + random() # 1.5-2.5 addon = model_gauss(sigma, boxsize, boxsize, boxsize, sigma, sigma, 38, 38, 40 ) scale = scale_mult * (0.5+random()) vf, kb = prep_vol(modelvol[k] + scale*addon) volfts[k].append(vf) del vf, modelvol if parm_format == "bdb": stack_data = "bdb:"+outstk delete_bdb(stack_data) else: stack_data = outstk + ".hdf" Cs = 2.0 pixel = parm_apix voltage = 120.0 ampcont = 10.0 ibd = 4096/2-boxsize iprj = 0 width = 240 xstart = 8 + boxsize/2 ystart = 8 + boxsize/2 rowlen = 17 from random import randint params = [] for idef in xrange(3, 8): irow = 0 icol = 0 mic = model_blank(4096, 4096) defocus = idef * 0.5#0.2 if parm_CTF: astampl=defocus*0.15 astangl=50.0 ctf = generate_ctf([defocus, Cs, voltage, pixel, ampcont, 0.0, astampl, astangl]) for i in xrange(nangle): for k in xrange(12): dphi = 8.0*(random()-0.5) dtht = 8.0*(random()-0.5) psi = 360.0*random() phi = angles[i][0]+dphi tht = angles[i][1]+dtht s2x = 4.0*(random()-0.5) s2y = 4.0*(random()-0.5) params.append([phi, tht, psi, s2x, s2y]) ivol = iprj % nvol #imgsrc = randint(0,nvlms-1) imgsrc = iprj % nvlms proj = prgs(volfts[imgsrc][ivol], kb, [phi, tht, psi, -s2x, -s2y]) x = xstart + irow * width y = ystart + icol * width mic += pad(proj, 4096, 4096, 1, 0.0, x-2048, y-2048, 0) proj = proj + model_gauss_noise( sigma_proj, nx, nx ) if parm_CTF: proj = filt_ctf(proj, ctf) proj.set_attr_dict({"ctf":ctf, "ctf_applied":0}) proj = proj + filt_gaussl(model_gauss_noise(sigma2_proj, nx, nx), sigma_gauss) proj.set_attr("origimgsrc",imgsrc) proj.set_attr("test_id", iprj) # flags describing the status of the image (1 = true, 0 = false) set_params2D(proj, [0.0, 0.0, 0.0, 0, 1.0]) set_params_proj(proj, [phi, tht, psi, s2x, s2y]) proj.write_image(stack_data, iprj) icol += 1 if icol == rowlen: icol = 0 irow += 1 iprj += 1 mic += model_gauss_noise(sigma_mic,4096,4096) if parm_CTF: #apply CTF mic = filt_ctf(mic, ctf) mic += filt_gaussl(model_gauss_noise(sigma2_mic, 4096, 4096), sigma_gauss_mic) mic.write_image(micpref + "%1d.hdf" % (idef-3), 0) drop_spider_doc("params.txt", params) elif options.importctf != None: print ' IMPORTCTF ' from utilities import read_text_row,write_text_row from random import randint import subprocess grpfile = 'groupid%04d'%randint(1000,9999) ctfpfile = 'ctfpfile%04d'%randint(1000,9999) cterr = [options.defocuserror/100.0, options.astigmatismerror] ctfs = read_text_row(options.importctf) for kk in xrange(len(ctfs)): root,name = os.path.split(ctfs[kk][-1]) ctfs[kk][-1] = name[:-4] if(options.input[:4] != 'bdb:'): ERROR('Sorry, only bdb files implemented','importctf',1) d = options.input[4:] #try: str = d.index('*') #except: str = -1 from string import split import glob uu = os.path.split(d) uu = os.path.join(uu[0],'EMAN2DB',uu[1]+'.bdb') flist = glob.glob(uu) for i in xrange(len(flist)): root,name = os.path.split(flist[i]) root = root[:-7] name = name[:-4] fil = 'bdb:'+os.path.join(root,name) sourcemic = EMUtil.get_all_attributes(fil,'ptcl_source_image') nn = len(sourcemic) gctfp = [] groupid = [] for kk in xrange(nn): junk,name2 = os.path.split(sourcemic[kk]) name2 = name2[:-4] ctfp = [-1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0] for ll in xrange(len(ctfs)): if(name2 == ctfs[ll][-1]): # found correct if(ctfs[ll][8]/ctfs[ll][0] <= cterr[0]): # acceptable defocus error ctfp = ctfs[ll][:8] if(ctfs[ll][10] > cterr[1] ): # error of astigmatism exceed the threshold, set astigmatism to zero. ctfp[6] = 0.0 ctfp[7] = 0.0 gctfp.append(ctfp) groupid.append(kk) break if(len(groupid) > 0): write_text_row(groupid, grpfile) write_text_row(gctfp, ctfpfile) cmd = "{} {} {} {}".format('e2bdb.py',fil,'--makevstack=bdb:'+root+'G'+name,'--list='+grpfile) #print cmd subprocess.call(cmd, shell=True) cmd = "{} {} {} {}".format('sxheader.py','bdb:'+root+'G'+name,'--params=ctf','--import='+ctfpfile) #print cmd subprocess.call(cmd, shell=True) else: print ' >>> Group ',name,' skipped.' cmd = "{} {} {}".format("rm -f",grpfile,ctfpfile) subprocess.call(cmd, shell=True) elif options.scale > 0.0: from utilities import read_text_row,write_text_row scale = options.scale nargs = len(args) if nargs != 2: print "Please provide names of input and output file!" return p = read_text_row(args[0]) for i in xrange(len(p)): p[i][3] /= scale p[i][4] /= scale write_text_row(p, args[1]) elif options.adaptive_mask: from utilities import get_im from morphology import adaptive_mask, binarize, erosion, dilation nsigma = options.nsigma ndilation = options.ndilation kernel_size = options.kernel_size gauss_standard_dev = options.gauss_standard_dev nargs = len(args) if nargs ==0: print " Create 3D mask from a given volume, either automatically or from the user provided threshold." elif nargs > 2: print "Too many inputs are given, try again!" return else: inputvol = get_im(args[0]) input_path, input_file_name = os.path.split(args[0]) input_file_name_root,ext=os.path.splitext(input_file_name) if nargs == 2: mask_file_name = args[1] else: mask_file_name = "adaptive_mask_for_"+input_file_name_root+".hdf" # Only hdf file is output. if options.threshold !=9999.: mask3d = binarize(inputvol, options.threshold) for i in xrange(options.ne): mask3d = erosion(mask3d) for i in xrange(options.nd): mask3d = dilation(mask3d) else: mask3d = adaptive_mask(inputvol, nsigma, ndilation, kernel_size, gauss_standard_dev) mask3d.write_image(mask_file_name) elif options.postprocess: from utilities import get_im from fundamentals import rot_avg_table from morphology import compute_bfactor,power from statistics import fsc from filter import filt_table, filt_gaussinv from EMAN2 import periodogram e1 = get_im(args[0],0) if e1.get_zsize()==1: nimage = EMUtil.get_image_count(args[0]) if options.mask !=None: m = get_im(options.mask) else: m = None for i in xrange(nimage): e1 = get_im(args[0],i) if m: e1 *=m guinerline = rot_avg_table(power(periodogram(e1),.5)) freq_max = 1/(2.*pixel_size) freq_min = 1./options.B_start b,junk=compute_bfactor(guinerline, freq_min, freq_max, pixel_size) tmp = b/pixel_size**2 sigma_of_inverse=sqrt(2./tmp) e1 = filt_gaussinv(e1,sigma_of_inverse) if options.low_pass_filter: from filter import filt_tanl e1 =filt_tanl(e1,options.ff, options.aa) e1.write_image(options.output) else: nargs = len(args) e1 = get_im(args[0]) if nargs >1: e2 = get_im(args[1]) if options.mask !=None: m = get_im(options.mask) else: m =None pixel_size = options.pixel_size from math import sqrt if m !=None: e1 *=m if nargs >1 :e2 *=m if options.fsc_weighted: frc = fsc(e1,e2,1) ## FSC is done on masked two images #### FSC weighting sqrt((2.*fsc)/(1+fsc)); fil = len(frc[1])*[None] for i in xrange(len(fil)): if frc[1][i]>=options.FSC_cutoff: tmp = frc[1][i] else: tmp = 0.0 fil[i] = sqrt(2.*tmp/(1.+tmp)) if nargs>1: e1 +=e2 if options.fsc_weighted: e1=filt_table(e1,fil) guinerline = rot_avg_table(power(periodogram(e1),.5)) freq_max = 1/(2.*pixel_size) freq_min = 1./options.B_start b,junk = compute_bfactor(guinerline, freq_min, freq_max, pixel_size) tmp = b/pixel_size**2 sigma_of_inverse=sqrt(2./tmp) e1 = filt_gaussinv(e1,sigma_of_inverse) if options.low_pass_filter: from filter import filt_tanl e1 =filt_tanl(e1,options.ff, options.aa) e1.write_image(options.output) elif options.window_stack: nargs = len(args) if nargs ==0: print " Reduce image size of a stack" return else: output_stack_name = None inputstack = args[0] if nargs ==2:output_stack_name = args[1] input_path,input_file_name=os.path.split(inputstack) input_file_name_root,ext=os.path.splitext(input_file_name) if input_file_name_root[0:3]=="bdb":stack_is_bdb= True else: stack_is_bdb= False if output_stack_name is None: if stack_is_bdb: output_stack_name ="bdb:reduced_"+input_file_name_root[4:] else:output_stack_name = "reduced_"+input_file_name_root+".hdf" # Only hdf file is output. nimage = EMUtil.get_image_count(inputstack) from fundamentals import window2d for i in xrange(nimage): image = EMData() image.read_image(inputstack,i) w = window2d(image,options.box,options.box) w.write_image(output_stack_name,i) else: ERROR("Please provide option name","sxprocess.py",1)
def shiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1, oneDx=False, search_rng_y=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D from utilities import get_params2D, set_params2D from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from EMAN2 import Processor from time import time number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("shiftali_MPI") max_iter=int(maxit) if myid == main_node: if ftp == "bdb": from EMAN2db import db_open_dict dummy = db_open_dict(stack, True) nima = EMUtil.get_image_count(stack) else: nima = 0 nima = bcast_number_to_all(nima, source_node = main_node) list_of_particles = range(nima) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) list_of_particles = list_of_particles[image_start: image_end] # read nx and ctf_app (if CTF) and broadcast to all nodes if myid == main_node: ima = EMData() ima.read_image(stack, list_of_particles[0], True) nx = ima.get_xsize() ny = ima.get_ysize() if CTF: ctf_app = ima.get_attr_default('ctf_applied', 2) del ima else: nx = 0 ny = 0 if CTF: ctf_app = 0 nx = bcast_number_to_all(nx, source_node = main_node) ny = bcast_number_to_all(ny, source_node = main_node) if CTF: ctf_app = bcast_number_to_all(ctf_app, source_node = main_node) if ctf_app > 0: ERROR("data cannot be ctf-applied", "shiftali_MPI", 1, myid) if maskfile == None: mrad = min(nx, ny) mask = model_circle(mrad//2-2, nx, ny) else: mask = get_im(maskfile) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None from global_def import CACHE_DISABLE if CACHE_DISABLE: data = EMData.read_images(stack, list_of_particles) else: for i in xrange(number_of_proc): if myid == i: data = EMData.read_images(stack, list_of_particles) if ftp == "bdb": mpi_barrier(MPI_COMM_WORLD) for im in xrange(len(data)): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) else: ctf_2_sum = None if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) for i in xrange(0,nx,2): for j in xrange(ny): temp.set_value_at(i,j,snr) Util.add_img(ctf_2_sum, temp) del temp total_iter = 0 # apply initial xform.align2d parameters stored in header init_params = [] for im in xrange(len(data)): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], sx=p['tx'], sy=p['ty'], mirror=p['mirror'], scale=p['scale']) # fourier transform all images, and apply ctf if CTF for im in xrange(len(data)): if CTF: ctf_params = data[im].get_attr("ctf") data[im] = filt_ctf(fft(data[im]), ctf_params) else: data[im] = fft(data[im]) sx_sum=0 sy_sum=0 sx_sum_total=0 sy_sum_total=0 shift_x = [0.0]*len(data) shift_y = [0.0]*len(data) ishift_x = [0.0]*len(data) ishift_y = [0.0]*len(data) for Iter in xrange(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n"%(total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in data: Util.add_img(avg, im) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0/float(nima)) else: tavg = EMData(nx, ny, 1, False) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask( tavg, mask, False ) tavg -= stat[0] Util.mul_img(tavg, mask) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) tavg = fft(tavg) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) sx_sum=0 sy_sum=0 if search_rng > 0: nwx = 2*search_rng+1 else: nwx = nx if search_rng_y > 0: nwy = 2*search_rng_y+1 else: nwy = ny not_zero = 0 for im in xrange(len(data)): if oneDx: ctx = Util.window(ccf(data[im],tavg),nwx,1) p1 = peak_search(ctx) p1_x = -int(p1[0][3]) ishift_x[im] = p1_x sx_sum += p1_x else: p1 = peak_search(Util.window(ccf(data[im],tavg), nwx,nwy)) p1_x = -int(p1[0][4]) p1_y = -int(p1[0][5]) ishift_x[im] = p1_x ishift_y[im] = p1_y sx_sum += p1_x sy_sum += p1_y if not_zero == 0: if (not(ishift_x[im] == 0.0)) or (not(ishift_y[im] == 0.0)): not_zero = 1 sx_sum = mpi_reduce(sx_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if not oneDx: sy_sum = mpi_reduce(sy_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum_total = int(sx_sum[0]) if not oneDx: sy_sum_total = int(sy_sum[0]) else: sx_sum_total = 0 sy_sum_total = 0 sx_sum_total = bcast_number_to_all(sx_sum_total, source_node = main_node) if not oneDx: sy_sum_total = bcast_number_to_all(sy_sum_total, source_node = main_node) sx_ave = round(float(sx_sum_total)/nima) sy_ave = round(float(sy_sum_total)/nima) for im in xrange(len(data)): p1_x = ishift_x[im] - sx_ave p1_y = ishift_y[im] - sy_ave params2 = {"filter_type" : Processor.fourier_filter_types.SHIFT, "x_shift" : p1_x, "y_shift" : p1_y, "z_shift" : 0.0} data[im] = Processor.EMFourierFilter(data[im], params2) shift_x[im] += p1_x shift_y[im] += p1_y # stop if all shifts are zero not_zero = mpi_reduce(not_zero, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: not_zero_all = int(not_zero[0]) else: not_zero_all = 0 not_zero_all = bcast_number_to_all(not_zero_all, source_node = main_node) if myid == main_node: print_msg("Time of iteration = %12.2f\n"%(time()-start_time)) start_time = time() if not_zero_all == 0: break #for im in xrange(len(data)): data[im] = fft(data[im]) This should not be required as only header information is used # combine shifts found with the original parameters for im in xrange(len(data)): t0 = init_params[im] t1 = Transform() t1.set_params({"type":"2D","alpha":0,"scale":t0.get_scale(),"mirror":0,"tx":shift_x[im],"ty":shift_y[im]}) # combine t0 and t1 tt = t1*t0 data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if(file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("shiftali_MPI")
def helicalshiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im, pad from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D, fshift from utilities import get_params2D, set_params2D, chunks_distribution from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from time import time from pixel_error import ordersegments from math import sqrt, atan2, tan, pi nproc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("helical-shiftali_MPI") max_iter=int(maxit) if( myid == main_node): infils = EMUtil.get_all_attributes(stack, "filament") ptlcoords = EMUtil.get_all_attributes(stack, 'ptcl_source_coord') filaments = ordersegments(infils, ptlcoords) total_nfils = len(filaments) inidl = [0]*total_nfils for i in xrange(total_nfils): inidl[i] = len(filaments[i]) linidl = sum(inidl) nima = linidl tfilaments = [] for i in xrange(total_nfils): tfilaments += filaments[i] del filaments else: total_nfils = 0 linidl = 0 total_nfils = bcast_number_to_all(total_nfils, source_node = main_node) if myid != main_node: inidl = [-1]*total_nfils inidl = bcast_list_to_all(inidl, myid, source_node = main_node) linidl = bcast_number_to_all(linidl, source_node = main_node) if myid != main_node: tfilaments = [-1]*linidl tfilaments = bcast_list_to_all(tfilaments, myid, source_node = main_node) filaments = [] iendi = 0 for i in xrange(total_nfils): isti = iendi iendi = isti+inidl[i] filaments.append(tfilaments[isti:iendi]) del tfilaments,inidl if myid == main_node: print_msg( "total number of filaments: %d"%total_nfils) if total_nfils< nproc: ERROR('number of CPUs (%i) is larger than the number of filaments (%i), please reduce the number of CPUs used'%(nproc, total_nfils), "ehelix_MPI", 1,myid) # balanced load temp = chunks_distribution([[len(filaments[i]), i] for i in xrange(len(filaments))], nproc)[myid:myid+1][0] filaments = [filaments[temp[i][1]] for i in xrange(len(temp))] nfils = len(filaments) #filaments = [[0,1]] #print "filaments",filaments list_of_particles = [] indcs = [] k = 0 for i in xrange(nfils): list_of_particles += filaments[i] k1 = k+len(filaments[i]) indcs.append([k,k1]) k = k1 data = EMData.read_images(stack, list_of_particles) ldata = len(data) print "ldata=", ldata nx = data[0].get_xsize() ny = data[0].get_ysize() if maskfile == None: mrad = min(nx, ny)//2-2 mask = pad( model_blank(2*mrad+1, ny, 1, 1.0), nx, ny, 1, 0.0) else: mask = get_im(maskfile) # apply initial xform.align2d parameters stored in header init_params = [] for im in xrange(ldata): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], p['tx'], p['ty'], p['mirror'], p['scale']) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None ctf_abs_sum = None from utilities import info for im in xrange(ldata): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") qctf = data[im].get_attr("ctf_applied") if qctf == 0: data[im] = filt_ctf(fft(data[im]), ctf_params) data[im].set_attr('ctf_applied', 1) elif qctf != 1: ERROR('Incorrectly set qctf flag', "helicalshiftali_MPI", 1,myid) ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) else: data[im] = fft(data[im]) del list_of_particles if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) tsnr = 1./snr for i in xrange(0,nx+2,2): for j in xrange(ny): temp.set_value_at(i,j,tsnr) temp.set_value_at(i+1,j,0.0) #info(ctf_2_sum) Util.add_img(ctf_2_sum, temp) #info(ctf_2_sum) del temp total_iter = 0 shift_x = [0.0]*ldata for Iter in xrange(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n"%(total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in xrange(ldata): Util.add_img(avg, fshift(data[im], shift_x[im])) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0/float(nima)) else: tavg = model_blank(nx,ny) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask( tavg, mask, False ) tavg -= stat[0] Util.mul_img(tavg, mask) tavg.write_image("tavg.hdf",Iter) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) tavg = fft(tavg) sx_sum = 0.0 nxc = nx//2 for ifil in xrange(nfils): """ # Calculate filament average avg = EMData(nx, ny, 1, False) filnima = 0 for im in xrange(indcs[ifil][0], indcs[ifil][1]): Util.add_img(avg, data[im]) filnima += 1 tavg = Util.mult_scalar(avg, 1.0/float(filnima)) """ # Calculate 1D ccf between each segment and filament average nsegms = indcs[ifil][1]-indcs[ifil][0] ctx = [None]*nsegms pcoords = [None]*nsegms for im in xrange(indcs[ifil][0], indcs[ifil][1]): ctx[im-indcs[ifil][0]] = Util.window(ccf(tavg, data[im]), nx, 1) pcoords[im-indcs[ifil][0]] = data[im].get_attr('ptcl_source_coord') #ctx[im-indcs[ifil][0]].write_image("ctx.hdf",im-indcs[ifil][0]) #print " CTX ",myid,im,Util.infomask(ctx[im-indcs[ifil][0]], None, True) # search for best x-shift cents = nsegms//2 dst = sqrt(max((pcoords[cents][0] - pcoords[0][0])**2 + (pcoords[cents][1] - pcoords[0][1])**2, (pcoords[cents][0] - pcoords[-1][0])**2 + (pcoords[cents][1] - pcoords[-1][1])**2)) maxincline = atan2(ny//2-2-float(search_rng),dst) kang = int(dst*tan(maxincline)+0.5) #print " settings ",nsegms,cents,dst,search_rng,maxincline,kang # ## C code for alignment. @ming results = [0.0]*3; results = Util.helixshiftali(ctx, pcoords, nsegms, maxincline, kang, search_rng,nxc) sib = int(results[0]) bang = results[1] qm = results[2] #print qm, sib, bang # qm = -1.e23 # # for six in xrange(-search_rng, search_rng+1,1): # q0 = ctx[cents].get_value_at(six+nxc) # for incline in xrange(kang+1): # qt = q0 # qu = q0 # if(kang>0): tang = tan(maxincline/kang*incline) # else: tang = 0.0 # for kim in xrange(cents+1,nsegms): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # #print " A ", ifil,six,incline,kim,xl,ixl,dxl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # for kim in xrange(cents): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # if( qt > qm ): # qm = qt # sib = six # bang = tang # if( qu > qm ): # qm = qu # sib = six # bang = -tang #if incline == 0: print "incline = 0 ",six,tang,qt,qu #print qm,six,sib,bang #print " got results ",indcs[ifil][0], indcs[ifil][1], ifil,myid,qm,sib,tang,bang,len(ctx),Util.infomask(ctx[0], None, True) for im in xrange(indcs[ifil][0], indcs[ifil][1]): kim = im-indcs[ifil][0] dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) if(kim < cents): xl = -dst*bang+sib else: xl = dst*bang+sib shift_x[im] = xl # Average shift sx_sum += shift_x[indcs[ifil][0]+cents] # #print myid,sx_sum,total_nfils sx_sum = mpi_reduce(sx_sum, 1, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum = float(sx_sum[0])/total_nfils print_msg("Average shift %6.2f\n"%(sx_sum)) else: sx_sum = 0.0 sx_sum = 0.0 sx_sum = bcast_number_to_all(sx_sum, source_node = main_node) for im in xrange(ldata): shift_x[im] -= sx_sum #print " %3d %6.3f"%(im,shift_x[im]) #exit() # combine shifts found with the original parameters for im in xrange(ldata): t1 = Transform() ##import random ##shix=random.randint(-10, 10) ##t1.set_params({"type":"2D","tx":shix}) t1.set_params({"type":"2D","tx":shift_x[im]}) # combine t0 and t1 tt = t1*init_params[im] data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if(file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, 0, ldata, nproc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, 0, ldata, nproc) else: send_attr_dict(main_node, data, par_str, 0, ldata) if myid == main_node: print_end_msg("helical-shiftali_MPI")
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl=0.2 --aa=0.1 --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--ave2D", type="string" , default=False, help="write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string" , default=False, help="write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string" , default=False, help="write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string" , default=False, help="compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int" , default=10 , help="number of neighbouring projections") parser.add_option("--no_norm", action="store_true", default=False, help="do not use normalization") parser.add_option("--radiusvar", type="int" , default=-1 , help="radius for 3D var" ) parser.add_option("--npad", type="int" , default=2 , help="number of time to pad the original images") parser.add_option("--sym" , type="string" , default="c1" , help="symmetry") parser.add_option("--fl", type="float" , default=0.0 , help="stop-band frequency (Default - no filtration)") parser.add_option("--aa", type="float" , default=0.0 , help="fall off of the filter (Default - no filtration)") parser.add_option("--CTF", action="store_true", default=False, help="use CFT correction") parser.add_option("--VERBOSE", action="store_true", default=False, help="Long output for debugging") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option("--VAR" , action="store_true", default=False, help="stack on input consists of 2D variances (Default False)") parser.add_option("--decimate", type="float", default=1.0, help="image decimate rate, a number large than 1. default is 1") parser.add_option("--window", type="int", default=0, help="reduce images to a small image size without changing pixel_size. Default value is zero.") #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") parser.add_option("--nvec", type="int" , default=0 , help="number of eigenvectors, default = 0 meaning no PCA calculated") parser.add_option("--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") (options,args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict if options.symmetrize : try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if( number_of_proc > 1 ): ERROR("Cannot use more than one CPU for symmetry prepration","sx3dvariability",1) except: pass except: pass # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" instack = args[0] sym = options.sym if( sym == "c1" ): ERROR("Thre is no need to symmetrize stack for C1 symmetry","sx3dvariability",1) if(instack[:4] !="bdb:"): stack = "bdb:data" delete_bdb(stack) cmdexecute("sxcpy.py "+instack+" "+stack) else: stack = instack qt = EMUtil.get_all_attributes(stack,'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None]*na for k in xrange(ks): delete_bdb("bdb:Q%1d"%k) cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) DB = db_open_dict("bdb:Q%1d"%k) for i in xrange(na): ut = qt[i]*ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() delete_bdb("bdb:sdata") cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") #cmdexecute("ls EMAN2DB/sdata*") a = get_im("bdb:sdata") a.set_attr("variabilitysymmetry",sym) a.write_image("bdb:sdata") else: sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 1: stack = args[0] else: print( "usage: " + usage) print( "Please run '" + progname + " -h' for detailed options") return 1 t0 = time() # obsolete flags options.MPI = True options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) if options.VAR and options.SND: ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) exit() if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) exit() #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) # exit() if options.nvec > 0 : ERROR("PCA option not implemented", "sx3dvariability", 1, myid) exit() if options.nvec > 0 and options.ave3D == None: ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", myid=myid) exit() import string options.sym = options.sym.lower() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True if myid == main_node: print_begin_msg("sx3dvariability") print_msg("%-70s: %s\n"%("Input stack", stack)) img_per_grp = options.img_per_grp nvec = options.nvec radiuspca = options.radiuspca symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() if options.sym != "c1" : imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry") if(i != options.sym): ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", myid=myid) except: ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", myid=myid) from utilities import get_symt i = len(get_symt(options.sym)) if((nima/i)*i != nima): ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", myid=myid) symbaselen = nima/i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) Tracker ={} Tracker["nx"] =nx Tracker["ny"] =ny Tracker["total_stack"]=nima if options.decimate==1.: if options.window !=0: nx = options.window ny = options.window else: if options.window ==0: nx = int(nx/options.decimate) ny = int(ny/options.decimate) else: nx = int(options.window/options.decimate) ny = nx symbaselen = bcast_number_to_all(symbaselen) if radiuspca == -1: radiuspca = nx/2-2 if myid == main_node: print_msg("%-70s: %d\n"%("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: #varList = EMData.read_images(stack, range(img_begin, img_end)) varList = [] this_image = EMData() for index_of_particle in xrange(img_begin,img_end): this_image.read_image(stack,index_of_particle) varList.append(image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in xrange(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x*10000+psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() print_msg("%-70s: %d\n"%("Number of neighboring projections", img_per_grp)) print_msg("...... Finding neighboring projections\n") if options.VERBOSE: print "Number of images per group: ", img_per_grp print "Now grouping projections" proj_angles.sort() proj_angles_list = [0.0]*(nima*4) if myid == main_node: for i in xrange(nima): proj_angles_list[i*4] = proj_angles[i][1] proj_angles_list[i*4+1] = proj_angles[i][2] proj_angles_list[i*4+2] = proj_angles[i][3] proj_angles_list[i*4+3] = proj_angles[i][4] proj_angles_list = bcast_list_to_all(proj_angles_list, myid, main_node) proj_angles = [] for i in xrange(nima): proj_angles.append([proj_angles_list[i*4], proj_angles_list[i*4+1], proj_angles_list[i*4+2], int(proj_angles_list[i*4+3])]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) if options.VERBOSE: print "On node %2d, number of images needed to be read = %5d"%(myid, len(all_proj)) index = {} for i in xrange(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: print_msg("%-70s: %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2)) print_msg("%-70s: %d\n"%("Number of groups processed on the main node", len(proj_list))) if options.VERBOSE: print "Grouping projections took: ", (time()-t2)/60 , "[min]" print "Number of groups on main node: ", len(proj_list) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: print_msg("...... calculating the stack of 2D variances \n") if options.VERBOSE: print "Now calculating the stack of 2D variances" proj_params = [0.0]*(nima*5) aveList = [] varList = [] if nvec > 0: eigList = [[] for i in xrange(nvec)] if options.VERBOSE: print "Begin to read images on processor %d"%(myid) ttt = time() #imgdata = EMData.read_images(stack, all_proj) img = EMData() imgdata = [] for index_of_proj in xrange(len(all_proj)): img.read_image(stack, all_proj[index_of_proj]) dmg = image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF) #print dmg.get_xsize(), "init" imgdata.append(dmg) if options.VERBOSE: print "Reading images on processor %d done, time = %.2f"%(myid, time()-ttt) print "On processor %d, we got %d images"%(myid, len(imgdata)) mpi_barrier(MPI_COMM_WORLD) ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank for i in xrange(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi]) grp_imgdata = [] for j in xrange(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj]) alpha, sx, sy, mirror = params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM-phi, 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM-phi), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM-phi), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM-phi)), 0.0, 0.0, 1.0) set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0]) grp_imgdata.append(imgdata[mj]) #print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize() if not options.no_norm: #print grp_imgdata[j].get_xsize() mask = model_circle(nx/2-2, nx, nx) for k in xrange(img_per_grp): ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std del mask if options.fl > 0.0: from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d(fft( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa) ),nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: for k in xrange(img_per_grp): grp_imgdata[k] = filt_tanl( grp_imgdata[k], options.fl, options.aa) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: from utilities import pad, read_text_file from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1) ) , nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) ''' if i < 10 and myid == main_node: for k in xrange(10): grp_imgdata[k].write_image("grp%03d.hdf"%i, k) ''' """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("pp.hdf", pp) """ ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata) """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("qq.hdf", pp) """ var = model_blank(nx,ny) for q in grp_imgdata: Util.add_img2( var, q ) Util.mul_scalar( var, 1.0/(len(grp_imgdata)-1)) # Switch to std dev var = square_root(threshold(var)) #if options.CTF: ave, var = avgvar_ctf(grp_imgdata, mode="a") #else: ave, var = avgvar(grp_imgdata, mode="a") """ if myid == main_node: ave.write_image("avgv.hdf",i) var.write_image("varv.hdf",i) """ set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) if options.VERBOSE: print "%5.2f%% done on processor %d"%(i*100.0/len(proj_list), myid) if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in xrange(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ del imgdata # To this point, all averages, variances, and eigenvectors are computed if options.ave2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(options.ave2D, km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) """ nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol=fpol(ave, Tracker["nx"],Tracker["nx"],Tracker["nx"]) tmpvol.write_image(options.ave2D, km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) """ if options.ave3D: from fundamentals import fpol if options.VERBOSE: print "Reconstructing 3D average volume" ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: ave3D=fpol(ave3D,Tracker["nx"],Tracker["nx"],Tracker["nx"]) ave3D.write_image(options.ave3D) print_msg("%-70s: %s\n"%("Writing to the disk volume reconstructed from averages as", options.ave3D)) del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList if nvec > 0: for k in xrange(nvec): if options.VERBOSE: print "Reconstruction eigenvolumes", k cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image("eig3d_%03d.hdf"%k, ITER) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in xrange(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) print " Eigenvector: ",k," number changed ",int(icont[0]) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(varList)): tmpvol=fpol(varList[im], Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(options.var2D, km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) tmpvol=fpol(ave, Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(options.var2D, km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(varList)): send_EMData(varList[im], main_node, im+myid+70000)# What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node and options.VERBOSE: print "Reconstructing 3D variability volume" t6 = time() radiusvar = options.radiusvar if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol res =fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"]) res.write_image(options.var3D) if myid == main_node: print_msg("%-70s: %.2f\n"%("Reconstructing 3D variability took [s]", time()-t6)) if options.VERBOSE: print "Reconstruction took: %.2f [min]"%((time()-t6)/60) if myid == main_node: print_msg("%-70s: %.2f\n"%("Total time for these computations [s]", time()-t0)) if options.VERBOSE: print "Total time for these computations: %.2f [min]"%((time()-t0)/60) print_end_msg("sx3dvariability") global_def.BATCH = False from mpi import mpi_finalize mpi_finalize()
def shiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1, oneDx=False, search_rng_y=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from pap_statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D from utilities import get_params2D, set_params2D from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from EMAN2 import Processor from time import time number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("shiftali_MPI") max_iter = int(maxit) if myid == main_node: if ftp == "bdb": from EMAN2db import db_open_dict dummy = db_open_dict(stack, True) nima = EMUtil.get_image_count(stack) else: nima = 0 nima = bcast_number_to_all(nima, source_node=main_node) list_of_particles = list(range(nima)) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) list_of_particles = list_of_particles[image_start:image_end] # read nx and ctf_app (if CTF) and broadcast to all nodes if myid == main_node: ima = EMData() ima.read_image(stack, list_of_particles[0], True) nx = ima.get_xsize() ny = ima.get_ysize() if CTF: ctf_app = ima.get_attr_default('ctf_applied', 2) del ima else: nx = 0 ny = 0 if CTF: ctf_app = 0 nx = bcast_number_to_all(nx, source_node=main_node) ny = bcast_number_to_all(ny, source_node=main_node) if CTF: ctf_app = bcast_number_to_all(ctf_app, source_node=main_node) if ctf_app > 0: ERROR("data cannot be ctf-applied", "shiftali_MPI", 1, myid) if maskfile == None: mrad = min(nx, ny) mask = model_circle(mrad // 2 - 2, nx, ny) else: mask = get_im(maskfile) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None from global_def import CACHE_DISABLE if CACHE_DISABLE: data = EMData.read_images(stack, list_of_particles) else: for i in range(number_of_proc): if myid == i: data = EMData.read_images(stack, list_of_particles) if ftp == "bdb": mpi_barrier(MPI_COMM_WORLD) for im in range(len(data)): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) else: ctf_2_sum = None if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) for i in range(0, nx, 2): for j in range(ny): temp.set_value_at(i, j, snr) Util.add_img(ctf_2_sum, temp) del temp total_iter = 0 # apply initial xform.align2d parameters stored in header init_params = [] for im in range(len(data)): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], sx=p['tx'], sy=p['ty'], mirror=p['mirror'], scale=p['scale']) # fourier transform all images, and apply ctf if CTF for im in range(len(data)): if CTF: ctf_params = data[im].get_attr("ctf") data[im] = filt_ctf(fft(data[im]), ctf_params) else: data[im] = fft(data[im]) sx_sum = 0 sy_sum = 0 sx_sum_total = 0 sy_sum_total = 0 shift_x = [0.0] * len(data) shift_y = [0.0] * len(data) ishift_x = [0.0] * len(data) ishift_y = [0.0] * len(data) for Iter in range(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n" % (total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in data: Util.add_img(avg, im) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0 / float(nima)) else: tavg = EMData(nx, ny, 1, False) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask(tavg, mask, False) tavg -= stat[0] Util.mul_img(tavg, mask) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) tavg = fft(tavg) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) sx_sum = 0 sy_sum = 0 if search_rng > 0: nwx = 2 * search_rng + 1 else: nwx = nx if search_rng_y > 0: nwy = 2 * search_rng_y + 1 else: nwy = ny not_zero = 0 for im in range(len(data)): if oneDx: ctx = Util.window(ccf(data[im], tavg), nwx, 1) p1 = peak_search(ctx) p1_x = -int(p1[0][3]) ishift_x[im] = p1_x sx_sum += p1_x else: p1 = peak_search(Util.window(ccf(data[im], tavg), nwx, nwy)) p1_x = -int(p1[0][4]) p1_y = -int(p1[0][5]) ishift_x[im] = p1_x ishift_y[im] = p1_y sx_sum += p1_x sy_sum += p1_y if not_zero == 0: if (not (ishift_x[im] == 0.0)) or (not (ishift_y[im] == 0.0)): not_zero = 1 sx_sum = mpi_reduce(sx_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if not oneDx: sy_sum = mpi_reduce(sy_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum_total = int(sx_sum[0]) if not oneDx: sy_sum_total = int(sy_sum[0]) else: sx_sum_total = 0 sy_sum_total = 0 sx_sum_total = bcast_number_to_all(sx_sum_total, source_node=main_node) if not oneDx: sy_sum_total = bcast_number_to_all(sy_sum_total, source_node=main_node) sx_ave = round(float(sx_sum_total) / nima) sy_ave = round(float(sy_sum_total) / nima) for im in range(len(data)): p1_x = ishift_x[im] - sx_ave p1_y = ishift_y[im] - sy_ave params2 = { "filter_type": Processor.fourier_filter_types.SHIFT, "x_shift": p1_x, "y_shift": p1_y, "z_shift": 0.0 } data[im] = Processor.EMFourierFilter(data[im], params2) shift_x[im] += p1_x shift_y[im] += p1_y # stop if all shifts are zero not_zero = mpi_reduce(not_zero, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: not_zero_all = int(not_zero[0]) else: not_zero_all = 0 not_zero_all = bcast_number_to_all(not_zero_all, source_node=main_node) if myid == main_node: print_msg("Time of iteration = %12.2f\n" % (time() - start_time)) start_time = time() if not_zero_all == 0: break #for im in xrange(len(data)): data[im] = fft(data[im]) This should not be required as only header information is used # combine shifts found with the original parameters for im in range(len(data)): t0 = init_params[im] t1 = Transform() t1.set_params({ "type": "2D", "alpha": 0, "scale": t0.get_scale(), "mirror": 0, "tx": shift_x[im], "ty": shift_y[im] }) # combine t0 and t1 tt = t1 * t0 data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if (file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("shiftali_MPI")
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group",type="int" , default=100 , help="number of images per group" ) parser.add_option("--radius", type="int" , default=-1 , help="radius for alignment" ) parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional") parser.add_option("--iter", type="int" , default=30, help="number of iterations within alignment (default = 30)" ) parser.add_option("--num_ali", type="int" , default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--thld_err", type="float" , default=1.0, help="threshold of pixel error (default = 1.732)" ) parser.add_option("--grouping" , type="string" , default="GRP", help="do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size") parser.add_option("--delta", type="float" , default=-1.0, help="angular step for reference projections (required for GEV method)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") (options,args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx/2-2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ",myid," ",len(proj_list_all),time()-st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima/img_per_grp-1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i%number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ",myid," ",time()-st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR("Angular step for reference projections is required for GEV method","sxproj_stability",1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin: img_end] del refproj ref_ang = [0.0]*(len(refprojdir)*2) for i in xrange(len(refprojdir)): ref_ang[i*2] = refprojdir[0][0] ref_ang[i*2+1] = refprojdir[0][1]+i*0.1 print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ",myid," ",time()-st proj_ang = [0.0]*(nima*2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i*2] = dp["phi"] proj_ang[i*2+1] = dp["theta"] print " C ",myid," ",time()-st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i*img_per_grp:(i+1)*img_per_grp]) del asi print " D ",myid," ",time()-st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ",myid," ",time()-st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ",myid," ",time()-st from utilities import nearest_proj proj_list, mirror_list = nearest_proj(proj_params, img_per_grp, range(img_begin, img_begin+1))#range(img_begin, img_end)) refprojdir = proj_params[img_begin: img_end] del proj_params, mirror_list print " D ",myid," ",time()-st else: ERROR("Incorrect projection grouping option","sxproj_stability",1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx,ny)]*len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0,0.0,-1.0]]*len(proj_list) for i in xrange(len(proj_list)): print " E ",myid," ",time()-st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0,-d["tx"],-d["ty"],0,1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = radius, rs = 1, step = 1.0, dst = 90.0, maxit = ite, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend( [alpha, sx, sy, mirror] ) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, thld_err, False, 2*radius+1) #print " H ",myid," ",time()-st if(len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj(class_data[j]) if( theta > 90.0): phi = (phi+540.0)%360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi*phi vtht += theta*theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l>1 : l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l*aphi*aphi)/l vtht = (vtht - l*atht*atht)/l from math import sqrt refprojdir[i] = [aphi, atht, (sqrt(max(vphi,0.0))+sqrt(max(vtht,0.0)))/2.0] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ",i, refprojdir[i] aveList[i].set_attr('members',[-1]) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def helicalshiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im, pad from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from pap_statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D, fshift from utilities import get_params2D, set_params2D, chunks_distribution from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from time import time from pixel_error import ordersegments from math import sqrt, atan2, tan, pi nproc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("helical-shiftali_MPI") max_iter = int(maxit) if (myid == main_node): infils = EMUtil.get_all_attributes(stack, "filament") ptlcoords = EMUtil.get_all_attributes(stack, 'ptcl_source_coord') filaments = ordersegments(infils, ptlcoords) total_nfils = len(filaments) inidl = [0] * total_nfils for i in range(total_nfils): inidl[i] = len(filaments[i]) linidl = sum(inidl) nima = linidl tfilaments = [] for i in range(total_nfils): tfilaments += filaments[i] del filaments else: total_nfils = 0 linidl = 0 total_nfils = bcast_number_to_all(total_nfils, source_node=main_node) if myid != main_node: inidl = [-1] * total_nfils inidl = bcast_list_to_all(inidl, myid, source_node=main_node) linidl = bcast_number_to_all(linidl, source_node=main_node) if myid != main_node: tfilaments = [-1] * linidl tfilaments = bcast_list_to_all(tfilaments, myid, source_node=main_node) filaments = [] iendi = 0 for i in range(total_nfils): isti = iendi iendi = isti + inidl[i] filaments.append(tfilaments[isti:iendi]) del tfilaments, inidl if myid == main_node: print_msg("total number of filaments: %d" % total_nfils) if total_nfils < nproc: ERROR( 'number of CPUs (%i) is larger than the number of filaments (%i), please reduce the number of CPUs used' % (nproc, total_nfils), "ehelix_MPI", 1, myid) # balanced load temp = chunks_distribution([[len(filaments[i]), i] for i in range(len(filaments))], nproc)[myid:myid + 1][0] filaments = [filaments[temp[i][1]] for i in range(len(temp))] nfils = len(filaments) #filaments = [[0,1]] #print "filaments",filaments list_of_particles = [] indcs = [] k = 0 for i in range(nfils): list_of_particles += filaments[i] k1 = k + len(filaments[i]) indcs.append([k, k1]) k = k1 data = EMData.read_images(stack, list_of_particles) ldata = len(data) print("ldata=", ldata) nx = data[0].get_xsize() ny = data[0].get_ysize() if maskfile == None: mrad = min(nx, ny) // 2 - 2 mask = pad(model_blank(2 * mrad + 1, ny, 1, 1.0), nx, ny, 1, 0.0) else: mask = get_im(maskfile) # apply initial xform.align2d parameters stored in header init_params = [] for im in range(ldata): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], p['tx'], p['ty'], p['mirror'], p['scale']) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None ctf_abs_sum = None from utilities import info for im in range(ldata): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") qctf = data[im].get_attr("ctf_applied") if qctf == 0: data[im] = filt_ctf(fft(data[im]), ctf_params) data[im].set_attr('ctf_applied', 1) elif qctf != 1: ERROR('Incorrectly set qctf flag', "helicalshiftali_MPI", 1, myid) ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) else: data[im] = fft(data[im]) del list_of_particles if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) tsnr = 1. / snr for i in range(0, nx + 2, 2): for j in range(ny): temp.set_value_at(i, j, tsnr) temp.set_value_at(i + 1, j, 0.0) #info(ctf_2_sum) Util.add_img(ctf_2_sum, temp) #info(ctf_2_sum) del temp total_iter = 0 shift_x = [0.0] * ldata for Iter in range(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n" % (total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in range(ldata): Util.add_img(avg, fshift(data[im], shift_x[im])) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0 / float(nima)) else: tavg = model_blank(nx, ny) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask(tavg, mask, False) tavg -= stat[0] Util.mul_img(tavg, mask) tavg.write_image("tavg.hdf", Iter) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) tavg = fft(tavg) sx_sum = 0.0 nxc = nx // 2 for ifil in range(nfils): """ # Calculate filament average avg = EMData(nx, ny, 1, False) filnima = 0 for im in xrange(indcs[ifil][0], indcs[ifil][1]): Util.add_img(avg, data[im]) filnima += 1 tavg = Util.mult_scalar(avg, 1.0/float(filnima)) """ # Calculate 1D ccf between each segment and filament average nsegms = indcs[ifil][1] - indcs[ifil][0] ctx = [None] * nsegms pcoords = [None] * nsegms for im in range(indcs[ifil][0], indcs[ifil][1]): ctx[im - indcs[ifil][0]] = Util.window(ccf(tavg, data[im]), nx, 1) pcoords[im - indcs[ifil][0]] = data[im].get_attr( 'ptcl_source_coord') #ctx[im-indcs[ifil][0]].write_image("ctx.hdf",im-indcs[ifil][0]) #print " CTX ",myid,im,Util.infomask(ctx[im-indcs[ifil][0]], None, True) # search for best x-shift cents = nsegms // 2 dst = sqrt( max((pcoords[cents][0] - pcoords[0][0])**2 + (pcoords[cents][1] - pcoords[0][1])**2, (pcoords[cents][0] - pcoords[-1][0])**2 + (pcoords[cents][1] - pcoords[-1][1])**2)) maxincline = atan2(ny // 2 - 2 - float(search_rng), dst) kang = int(dst * tan(maxincline) + 0.5) #print " settings ",nsegms,cents,dst,search_rng,maxincline,kang # ## C code for alignment. @ming results = [0.0] * 3 results = Util.helixshiftali(ctx, pcoords, nsegms, maxincline, kang, search_rng, nxc) sib = int(results[0]) bang = results[1] qm = results[2] #print qm, sib, bang # qm = -1.e23 # # for six in xrange(-search_rng, search_rng+1,1): # q0 = ctx[cents].get_value_at(six+nxc) # for incline in xrange(kang+1): # qt = q0 # qu = q0 # if(kang>0): tang = tan(maxincline/kang*incline) # else: tang = 0.0 # for kim in xrange(cents+1,nsegms): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # #print " A ", ifil,six,incline,kim,xl,ixl,dxl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # for kim in xrange(cents): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # if( qt > qm ): # qm = qt # sib = six # bang = tang # if( qu > qm ): # qm = qu # sib = six # bang = -tang #if incline == 0: print "incline = 0 ",six,tang,qt,qu #print qm,six,sib,bang #print " got results ",indcs[ifil][0], indcs[ifil][1], ifil,myid,qm,sib,tang,bang,len(ctx),Util.infomask(ctx[0], None, True) for im in range(indcs[ifil][0], indcs[ifil][1]): kim = im - indcs[ifil][0] dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) if (kim < cents): xl = -dst * bang + sib else: xl = dst * bang + sib shift_x[im] = xl # Average shift sx_sum += shift_x[indcs[ifil][0] + cents] # #print myid,sx_sum,total_nfils sx_sum = mpi_reduce(sx_sum, 1, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum = float(sx_sum[0]) / total_nfils print_msg("Average shift %6.2f\n" % (sx_sum)) else: sx_sum = 0.0 sx_sum = 0.0 sx_sum = bcast_number_to_all(sx_sum, source_node=main_node) for im in range(ldata): shift_x[im] -= sx_sum #print " %3d %6.3f"%(im,shift_x[im]) #exit() # combine shifts found with the original parameters for im in range(ldata): t1 = Transform() ##import random ##shix=random.randint(-10, 10) ##t1.set_params({"type":"2D","tx":shix}) t1.set_params({"type": "2D", "tx": shift_x[im]}) # combine t0 and t1 tt = t1 * init_params[im] data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if (file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, 0, ldata, nproc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, 0, ldata, nproc) else: send_attr_dict(main_node, data, par_str, 0, ldata) if myid == main_node: print_end_msg("helical-shiftali_MPI")
def ali3d_MPI(stack, ref_vol, outdir, maskfile = None, ir = 1, ou = -1, rs = 1, xr = "4 2 2 1", yr = "-1", ts = "1 1 0.5 0.25", delta = "10 6 4 4", an = "-1", center = 0, maxit = 5, term = 95, CTF = False, fourvar = False, snr = 1.0, ref_a = "S", sym = "c1", sort=True, cutoff=999.99, pix_cutoff="0", two_tail=False, model_jump="1 1 1 1 1", restart=False, save_half=False, protos=None, oplane=None, lmask=-1, ilmask=-1, findseam=False, vertstep=None, hpars="-1", hsearch="73.0 170.0", full_output = False, compare_repro = False, compare_ref_free = "-1", ref_free_cutoff= "-1 -1 -1 -1", wcmask = None, debug = False, recon_pad = 4): from alignment import Numrinit, prepare_refrings from utilities import model_circle, get_image, drop_image, get_input_from_string from utilities import bcast_list_to_all, bcast_number_to_all, reduce_EMData_to_root, bcast_EMData_to_all from utilities import send_attr_dict from utilities import get_params_proj, file_type from fundamentals import rot_avg_image import os import types from utilities import print_begin_msg, print_end_msg, print_msg from mpi import mpi_bcast, mpi_comm_size, mpi_comm_rank, MPI_FLOAT, MPI_COMM_WORLD, mpi_barrier, mpi_reduce from mpi import mpi_reduce, MPI_INT, MPI_SUM, mpi_finalize from filter import filt_ctf from projection import prep_vol, prgs from statistics import hist_list, varf3d_MPI, fsc_mask from numpy import array, bincount, array2string, ones number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if myid == main_node: if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "ali3d_MPI", 1) os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) if debug: from time import sleep while not os.path.exists(outdir): print "Node ",myid," waiting..." sleep(5) info_file = os.path.join(outdir, "progress%04d"%myid) finfo = open(info_file, 'w') else: finfo = None mjump = get_input_from_string(model_jump) xrng = get_input_from_string(xr) if yr == "-1": yrng = xrng else : yrng = get_input_from_string(yr) step = get_input_from_string(ts) delta = get_input_from_string(delta) ref_free_cutoff = get_input_from_string(ref_free_cutoff) pix_cutoff = get_input_from_string(pix_cutoff) lstp = min(len(xrng), len(yrng), len(step), len(delta)) if an == "-1": an = [-1] * lstp else: an = get_input_from_string(an) # make sure pix_cutoff is set for all iterations if len(pix_cutoff)<lstp: for i in xrange(len(pix_cutoff),lstp): pix_cutoff.append(pix_cutoff[-1]) # don't waste time on sub-pixel alignment for low-resolution ang incr for i in range(len(step)): if (delta[i] > 4 or delta[i] == -1) and step[i] < 1: step[i] = 1 first_ring = int(ir) rstep = int(rs) last_ring = int(ou) max_iter = int(maxit) center = int(center) nrefs = EMUtil.get_image_count( ref_vol ) nmasks = 0 if maskfile: # read number of masks within each maskfile (mc) nmasks = EMUtil.get_image_count( maskfile ) # open masks within maskfile (mc) maskF = EMData.read_images(maskfile, xrange(nmasks)) vol = EMData.read_images(ref_vol, xrange(nrefs)) nx = vol[0].get_xsize() ## make sure box sizes are the same if myid == main_node: im=EMData.read_images(stack,[0]) bx = im[0].get_xsize() if bx!=nx: print_msg("Error: Stack box size (%i) differs from initial model (%i)\n"%(bx,nx)) sys.exit() del im,bx # for helical processing: helicalrecon = False if protos is not None or hpars != "-1" or findseam is True: helicalrecon = True # if no out-of-plane param set, use 5 degrees if oplane is None: oplane=5.0 if protos is not None: proto = get_input_from_string(protos) if len(proto) != nrefs: print_msg("Error: insufficient protofilament numbers supplied") sys.exit() if hpars != "-1": hpars = get_input_from_string(hpars) if len(hpars) != 2*nrefs: print_msg("Error: insufficient helical parameters supplied") sys.exit() ## create helical parameter file for helical reconstruction if helicalrecon is True and myid == main_node: from hfunctions import createHpar # create initial helical parameter files dp=[0]*nrefs dphi=[0]*nrefs vdp=[0]*nrefs vdphi=[0]*nrefs for iref in xrange(nrefs): hpar = os.path.join(outdir,"hpar%02d.spi"%(iref)) params = False if hpars != "-1": # if helical parameters explicitly given, set twist & rise params = [float(hpars[iref*2]),float(hpars[(iref*2)+1])] dp[iref],dphi[iref],vdp[iref],vdphi[iref] = createHpar(hpar,proto[iref],params,vertstep) # get values for helical search parameters hsearch = get_input_from_string(hsearch) if len(hsearch) != 2: print_msg("Error: specify outer and inner radii for helical search") sys.exit() if last_ring < 0 or last_ring > int(nx/2)-2 : last_ring = int(nx/2) - 2 if myid == main_node: # import user_functions # user_func = user_functions.factory[user_func_name] print_begin_msg("ali3d_MPI") print_msg("Input stack : %s\n"%(stack)) print_msg("Reference volume : %s\n"%(ref_vol)) print_msg("Output directory : %s\n"%(outdir)) if nmasks > 0: print_msg("Maskfile (number of masks) : %s (%i)\n"%(maskfile,nmasks)) print_msg("Inner radius : %i\n"%(first_ring)) print_msg("Outer radius : %i\n"%(last_ring)) print_msg("Ring step : %i\n"%(rstep)) print_msg("X search range : %s\n"%(xrng)) print_msg("Y search range : %s\n"%(yrng)) print_msg("Translational step : %s\n"%(step)) print_msg("Angular step : %s\n"%(delta)) print_msg("Angular search range : %s\n"%(an)) print_msg("Maximum iteration : %i\n"%(max_iter)) print_msg("Center type : %i\n"%(center)) print_msg("CTF correction : %s\n"%(CTF)) print_msg("Signal-to-Noise Ratio : %f\n"%(snr)) print_msg("Reference projection method : %s\n"%(ref_a)) print_msg("Symmetry group : %s\n"%(sym)) print_msg("Fourier padding for 3D : %i\n"%(recon_pad)) print_msg("Number of reference models : %i\n"%(nrefs)) print_msg("Sort images between models : %s\n"%(sort)) print_msg("Allow images to jump : %s\n"%(mjump)) print_msg("CC cutoff standard dev : %f\n"%(cutoff)) print_msg("Two tail cutoff : %s\n"%(two_tail)) print_msg("Termination pix error : %f\n"%(term)) print_msg("Pixel error cutoff : %s\n"%(pix_cutoff)) print_msg("Restart : %s\n"%(restart)) print_msg("Full output : %s\n"%(full_output)) print_msg("Compare reprojections : %s\n"%(compare_repro)) print_msg("Compare ref free class avgs : %s\n"%(compare_ref_free)) print_msg("Use cutoff from ref free : %s\n"%(ref_free_cutoff)) if protos: print_msg("Protofilament numbers : %s\n"%(proto)) print_msg("Using helical search range : %s\n"%hsearch) if findseam is True: print_msg("Using seam-based reconstruction\n") if hpars != "-1": print_msg("Using hpars : %s\n"%hpars) if vertstep != None: print_msg("Using vertical step : %.2f\n"%vertstep) if save_half is True: print_msg("Saving even/odd halves\n") for i in xrange(100) : print_msg("*") print_msg("\n\n") if maskfile: if type(maskfile) is types.StringType: mask3D = get_image(maskfile) else: mask3D = maskfile else: mask3D = model_circle(last_ring, nx, nx, nx) numr = Numrinit(first_ring, last_ring, rstep, "F") mask2D = model_circle(last_ring,nx,nx) - model_circle(first_ring,nx,nx) fscmask = model_circle(last_ring,nx,nx,nx) if CTF: from filter import filt_ctf from reconstruction_rjh import rec3D_MPI_noCTF if myid == main_node: active = EMUtil.get_all_attributes(stack, 'active') list_of_particles = [] for im in xrange(len(active)): if active[im]: list_of_particles.append(im) del active nima = len(list_of_particles) else: nima = 0 total_nima = bcast_number_to_all(nima, source_node = main_node) if myid != main_node: list_of_particles = [-1]*total_nima list_of_particles = bcast_list_to_all(list_of_particles, source_node = main_node) image_start, image_end = MPI_start_end(total_nima, number_of_proc, myid) # create a list of images for each node list_of_particles = list_of_particles[image_start: image_end] nima = len(list_of_particles) if debug: finfo.write("image_start, image_end: %d %d\n" %(image_start, image_end)) finfo.flush() data = EMData.read_images(stack, list_of_particles) t_zero = Transform({"type":"spider","phi":0,"theta":0,"psi":0,"tx":0,"ty":0}) transmulti = [[t_zero for i in xrange(nrefs)] for j in xrange(nima)] for iref,im in ((iref,im) for iref in xrange(nrefs) for im in xrange(nima)): if nrefs == 1: transmulti[im][iref] = data[im].get_attr("xform.projection") else: # if multi models, keep track of eulers for all models try: transmulti[im][iref] = data[im].get_attr("eulers_txty.%i"%iref) except: data[im].set_attr("eulers_txty.%i"%iref,t_zero) scoremulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] pixelmulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] ref_res = [0.0 for x in xrange(nrefs)] apix = data[0].get_attr('apix_x') # for oplane parameter, create cylindrical mask if oplane is not None and myid == main_node: from hfunctions import createCylMask cmaskf=os.path.join(outdir, "mask3D_cyl.mrc") mask3D = createCylMask(data,ou,lmask,ilmask,cmaskf) # if finding seam of helix, create wedge masks if findseam is True: wedgemask=[] for pf in xrange(nrefs): wedgemask.append(EMData()) # wedgemask option if wcmask is not None: wcmask = get_input_from_string(wcmask) if len(wcmask) != 3: print_msg("Error: wcmask option requires 3 values: x y radius") sys.exit() # determine if particles have helix info: try: data[0].get_attr('h_angle') original_data = [] boxmask = True from hfunctions import createBoxMask except: boxmask = False # prepare particles for im in xrange(nima): data[im].set_attr('ID', list_of_particles[im]) data[im].set_attr('pix_score', int(0)) if CTF: # only phaseflip particles, not full CTF correction ctf_params = data[im].get_attr("ctf") st = Util.infomask(data[im], mask2D, False) data[im] -= st[0] data[im] = filt_ctf(data[im], ctf_params, sign = -1, binary=1) data[im].set_attr('ctf_applied', 1) # for window mask: if boxmask is True: h_angle = data[im].get_attr("h_angle") original_data.append(data[im].copy()) bmask = createBoxMask(nx,apix,ou,lmask,h_angle) data[im]*=bmask del bmask if debug: finfo.write( '%d loaded \n' % nima ) finfo.flush() if myid == main_node: # initialize data for the reference preparation function ref_data = [ mask3D, max(center,0), None, None, None, None ] # for method -1, switch off centering in user function from time import time # this is needed for gathering of pixel errors disps = [] recvcount = [] disps_score = [] recvcount_score = [] for im in xrange(number_of_proc): if( im == main_node ): disps.append(0) disps_score.append(0) else: disps.append(disps[im-1] + recvcount[im-1]) disps_score.append(disps_score[im-1] + recvcount_score[im-1]) ib, ie = MPI_start_end(total_nima, number_of_proc, im) recvcount.append( ie - ib ) recvcount_score.append((ie-ib)*nrefs) pixer = [0.0]*nima cs = [0.0]*3 total_iter = 0 volodd = EMData.read_images(ref_vol, xrange(nrefs)) voleve = EMData.read_images(ref_vol, xrange(nrefs)) if restart: # recreate initial volumes from alignments stored in header itout = "000_00" for iref in xrange(nrefs): if(nrefs == 1): modout = "" else: modout = "_model_%02d"%(iref) if(sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection',transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection',transmulti[im][iref]) fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index = group, npad = recon_pad) if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep=None if vertstep is not None: vstep=(vdp[iref],vdphi[iref]) print_msg("Old rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout, dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask) (vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals print_msg("New rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile) else: vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%itout),-1) if save_half is True: volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%itout),-1) voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%itout),-1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs,fl = ref_ali3d(ref_data) vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res = fl else: res_msg = "Models filtered at resolution of: \t" res = apix / fl ares = array2string(array(res), precision = 2) print_msg("%s%s\n\n"%(res_msg,ares)) bcast_EMData_to_all(vol[iref], myid, main_node) # write out headers, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) # projection matching for N_step in xrange(lstp): terminate = 0 Iter = -1 while(Iter < max_iter-1 and terminate == 0): Iter += 1 total_iter += 1 itout = "%03g_%02d" %(delta[N_step], Iter) if myid == main_node: print_msg("ITERATION #%3d, inner iteration #%3d\nDelta = %4.1f, an = %5.2f, xrange = %5.2f, yrange = %5.2f, step = %5.2f\n\n"%(N_step, Iter, delta[N_step], an[N_step], xrng[N_step],yrng[N_step],step[N_step])) for iref in xrange(nrefs): if myid == main_node: start_time = time() volft,kb = prep_vol( vol[iref] ) ## constrain projections to out of plane parameter theta1 = None theta2 = None if oplane is not None: theta1 = 90-oplane theta2 = 90+oplane refrings = prepare_refrings( volft, kb, nx, delta[N_step], ref_a, sym, numr, MPI=True, phiEqpsi = "Minus", initial_theta=theta1, delta_theta=theta2) del volft,kb if myid== main_node: print_msg( "Time to prepare projections for model %i: %s\n" % (iref, legibleTime(time()-start_time)) ) start_time = time() for im in xrange( nima ): data[im].set_attr("xform.projection", transmulti[im][iref]) if an[N_step] == -1: t1, peak, pixer[im] = proj_ali_incore(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],finfo) else: t1, peak, pixer[im] = proj_ali_incore_local(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],an[N_step],finfo) #data[im].set_attr("xform.projection"%iref, t1) if nrefs > 1: data[im].set_attr("eulers_txty.%i"%iref,t1) scoremulti[im][iref] = peak from pixel_error import max_3D_pixel_error # t1 is the current param, t2 is old t2 = transmulti[im][iref] pixelmulti[im][iref] = max_3D_pixel_error(t1,t2,numr[-3]) transmulti[im][iref] = t1 if myid == main_node: print_msg("Time of alignment for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() # gather scoring data from all processors from mpi import mpi_gatherv scoremultisend = sum(scoremulti,[]) pixelmultisend = sum(pixelmulti,[]) tmp = mpi_gatherv(scoremultisend,len(scoremultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD) tmp1 = mpi_gatherv(pixelmultisend,len(pixelmultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD) tmp = mpi_bcast(tmp,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD) tmp1 = mpi_bcast(tmp1,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD) tmp = map(float,tmp) tmp1 = map(float,tmp1) score = array(tmp).reshape(-1,nrefs) pixelerror = array(tmp1).reshape(-1,nrefs) score_local = array(scoremulti) mean_score = score.mean(axis=0) std_score = score.std(axis=0) cut = mean_score - (cutoff * std_score) cut2 = mean_score + (cutoff * std_score) res_max = score_local.argmax(axis=1) minus_cc = [0.0 for x in xrange(nrefs)] minus_pix = [0.0 for x in xrange(nrefs)] minus_ref = [0.0 for x in xrange(nrefs)] #output pixel errors if(myid == main_node): from statistics import hist_list lhist = 20 pixmin = pixelerror.min(axis=1) region, histo = hist_list(pixmin, lhist) if(region[0] < 0.0): region[0] = 0.0 print_msg("Histogram of pixel errors\n ERROR number of particles\n") for lhx in xrange(lhist): print_msg(" %10.3f %7d\n"%(region[lhx], histo[lhx])) # Terminate if 95% within 1 pixel error im = 0 for lhx in xrange(lhist): if(region[lhx] > 1.0): break im += histo[lhx] print_msg( "Percent of particles with pixel error < 1: %f\n\n"% (im/float(total_nima)*100)) term_cond = float(term)/100 if(im/float(total_nima) > term_cond): terminate = 1 print_msg("Terminating internal loop\n") del region, histo terminate = mpi_bcast(terminate, 1, MPI_INT, 0, MPI_COMM_WORLD) terminate = int(terminate[0]) for im in xrange(nima): if(sort==False): data[im].set_attr('group',999) elif (mjump[N_step]==1): data[im].set_attr('group',int(res_max[im])) pix_run = data[im].get_attr('pix_score') if (pix_cutoff[N_step]==1 and (terminate==1 or Iter == max_iter-1)): if (pixelmulti[im][int(res_max[im])] > 1): data[im].set_attr('pix_score',int(777)) if (score_local[im][int(res_max[im])]<cut[int(res_max[im])]) or (two_tail and score_local[im][int(res_max[im])]>cut2[int(res_max[im])]): data[im].set_attr('group',int(888)) minus_cc[int(res_max[im])] = minus_cc[int(res_max[im])] + 1 if(pix_run == 777): data[im].set_attr('group',int(777)) minus_pix[int(res_max[im])] = minus_pix[int(res_max[im])] + 1 if (compare_ref_free != "-1") and (ref_free_cutoff[N_step] != -1) and (total_iter > 1): id = data[im].get_attr('ID') if id in rejects: data[im].set_attr('group',int(666)) minus_ref[int(res_max[im])] = minus_ref[int(res_max[im])] + 1 minus_cc_tot = mpi_reduce(minus_cc,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) minus_pix_tot = mpi_reduce(minus_pix,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) minus_ref_tot = mpi_reduce(minus_ref,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) if (myid == main_node): if(sort): tot_max = score.argmax(axis=1) res = bincount(tot_max) else: res = ones(nrefs) * total_nima print_msg("Particle distribution: \t\t%s\n"%(res*1.0)) afcut1 = res - minus_cc_tot afcut2 = afcut1 - minus_pix_tot afcut3 = afcut2 - minus_ref_tot print_msg("Particle distribution after cc cutoff:\t\t%s\n"%(afcut1)) print_msg("Particle distribution after pix cutoff:\t\t%s\n"%(afcut2)) print_msg("Particle distribution after ref cutoff:\t\t%s\n\n"%(afcut3)) res = [0.0 for i in xrange(nrefs)] for iref in xrange(nrefs): if(center == -1): from utilities import estimate_3D_center_MPI, rotate_3D_shift dummy=EMData() cs[0], cs[1], cs[2], dummy, dummy = estimate_3D_center_MPI(data, total_nima, myid, number_of_proc, main_node) cs = mpi_bcast(cs, 3, MPI_FLOAT, main_node, MPI_COMM_WORLD) cs = [-float(cs[0]), -float(cs[1]), -float(cs[2])] rotate_3D_shift(data, cs) if(sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection',transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection',transmulti[im][iref]) if(nrefs == 1): modout = "" else: modout = "_model_%02d"%(iref) fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: print_msg("3D reconstruction time for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() # Compute Fourier variance if fourvar: outvar = os.path.join(outdir, "volVar_%s.hdf"%(itout)) ssnr_file = os.path.join(outdir, "ssnr_%s"%(itout)) varf = varf3d_MPI(data, ssnr_text_file=ssnr_file, mask2D=None, reference_structure=vol[iref], ou=last_ring, rw=1.0, npad=1, CTF=None, sign=1, sym=sym, myid=myid) if myid == main_node: print_msg("Time to calculate 3D Fourier variance for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() varf = 1.0/varf varf.write_image(outvar,-1) else: varf = None if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep=None if vertstep is not None: vstep=(vdp[iref],vdphi[iref]) print_msg("Old rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout, dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask) (vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals print_msg("New rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile) print_msg("Time to search and apply helical symmetry for model %i: %s\n\n"%(iref, legibleTime(time()-start_time))) start_time = time() else: vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%(itout)),-1) if save_half is True: volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%(itout)),-1) voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%(itout)),-1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc ref_data[4] = varf # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs,fl = ref_ali3d(ref_data) vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res[iref] = fl else: res_msg = "Models filtered at resolution of: \t" res[iref] = apix / fl del varf bcast_EMData_to_all(vol[iref], myid, main_node) if compare_ref_free != "-1": compare_repro = True if compare_repro: outfile_repro = comp_rep(refrings, data, itout, modout, vol[iref], group, nima, nx, myid, main_node, outdir) mpi_barrier(MPI_COMM_WORLD) if compare_ref_free != "-1": ref_free_output = os.path.join(outdir,"ref_free_%s%s"%(itout,modout)) rejects = compare(compare_ref_free, outfile_repro,ref_free_output,yrng[N_step], xrng[N_step], rstep,nx,apix,ref_free_cutoff[N_step], number_of_proc, myid, main_node) # retrieve alignment params from all processors par_str = ['xform.projection','ID','group'] if nrefs > 1: for iref in xrange(nrefs): par_str.append('eulers_txty.%i'%iref) if myid == main_node: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: ares = array2string(array(res), precision = 2) print_msg("%s%s\n\n"%(res_msg,ares)) dummy = EMData() if full_output: nimat = EMUtil.get_image_count(stack) output_file = os.path.join(outdir, "paramout_%s"%itout) foutput = open(output_file, 'w') for im in xrange(nimat): # save the parameters for each of the models outstring = "" dummy.read_image(stack,im,True) param3d = dummy.get_attr('xform.projection') g = dummy.get_attr("group") # retrieve alignments in EMAN-format pE = param3d.get_params('eman') outstring += "%f\t%f\t%f\t%f\t%f\t%i\n" %(pE["az"], pE["alt"], pE["phi"], pE["tx"], pE["ty"],g) foutput.write(outstring) foutput.close() del dummy mpi_barrier(MPI_COMM_WORLD) # mpi_finalize() if myid == main_node: print_end_msg("ali3d_MPI")
def generate_helimic(refvol, outdir, pixel, CTF=False, Cs=2.0, voltage=200.0, ampcont=10.0, nonoise=False, rand_seed=14567): from utilities import model_blank, model_gauss, model_gauss_noise, pad, get_im from random import random from projection import prgs, prep_vol from filter import filt_gaussl, filt_ctf from EMAN2 import EMAN2Ctf if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "sxhelical_demo", 1) os.mkdir(outdir) seed(rand_seed) Util.set_randnum_seed(rand_seed) angles = [] for i in range(3): angles.append([0.0 + 60.0 * i, 90.0 - i * 5, 0.0, 0.0, 0.0]) nangle = len(angles) volfts = get_im(refvol) nx = volfts.get_xsize() ny = volfts.get_ysize() nz = volfts.get_zsize() volfts, kbx, kby, kbz = prep_vol(volfts) iprj = 0 width = 500 xstart = 0 ystart = 0 for idef in range(3, 6): mic = model_blank(2048, 2048) #defocus = idef*0.2 defocus = idef * 0.6 ##@ming if CTF: #ctf = EMAN2Ctf() #ctf.from_dict( {"defocus":defocus, "cs":Cs, "voltage":voltage, "apix":pixel, "ampcont":ampcont, "bfactor":0.0} ) from utilities import generate_ctf ctf = generate_ctf( [defocus, 2, 200, 1.84, 0.0, ampcont, defocus * 0.2, 80] ) ##@ming the range of astigmatism amplitude is between 10 percent and 22 percent. 20 percent is a good choice. i = idef - 4 for k in range(1): psi = 90 + 10 * i proj = prgs( volfts, kbz, [angles[idef - 3][0], angles[idef - 3][1], psi, 0.0, 0.0], kbx, kby) proj = Util.window(proj, 320, nz) mic += pad(proj, 2048, 2048, 1, 0.0, 750 * i, 20 * i, 0) if not nonoise: mic += model_gauss_noise(30.0, 2048, 2048) if CTF: #apply CTF mic = filt_ctf(mic, ctf) if not nonoise: mic += filt_gaussl(model_gauss_noise(17.5, 2048, 2048), 0.3) mic.write_image("%s/mic%1d.hdf" % (outdir, idef - 3), 0)
def main(): from utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = ( progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" ) parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr (default 2,1)", ) parser.add_option( "--yr", type="string", default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)", ) parser.add_option( "--ts", type="string", default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)", ) parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)", ) parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option( "--verbose", action="store_true", default=False, help="print individual pixel error (default = False)" ) parser.add_option( "--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)", ) parser.add_option( "--method", type="string", default=" ", help="SHC (standard method is default when flag is ommitted)" ) (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import write_text_file, write_text_row global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx / 2 - 2 from utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF: from filter import filt_ctf for im in xrange(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in xrange(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if xrng[0] == 0.0 and yrng[0] == 0.0: avet = ali2d_ras( class_data, randomize=True, ir=1, ou=ou, rs=1, step=1.0, dst=90.0, maxit=options.maxit, check_mirror=True, FH=options.fl, FF=options.aa, ) else: avet = within_group_refinement( class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, maxit=options.maxit, FH=options.fl, FF=options.aa, method=options.method, ) from utilities import info # print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d" % ii) """ avet = class_data[0] from utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2 * ou + 1 ) print "%4s %20s %20s %20s %30s %6.2f" % ( "", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of", options.thld_err, ) print "Average stat: %10d %20d %20.2f %15.2f" % (len(class_data), len(stable_set), mir_stab_rate, pix_err) if len(stable_set) > 0: if options.stables: stab_mem = [[0, 0.0, 0] for j in xrange(len(stable_set))] for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from fundamentals import rot_shift2D avet.to_zero() l = -1 print "average parameters: angle, x-shift, y-shift, mirror" for j in stable_set_id: l += 1 print " %4d %4d %12.2f %12.2f %12.2f %1d" % ( l, j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3]), ) avet += rot_shift2D( class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) avet /= l + 1 avet.set_attr("members", stable_set_id) avet.set_attr("pix_err", pix_err) avet.set_attr("pixerr", particle_pixerr) avet.write_image(args[1]) global_def.BATCH = False