def make_lp_noise(n,f_c_noise,rate): # load experiment parameters a,b = filt.make_low_pass_butterworth(f_c_noise, 6,rate) N = 0 # to cut begining of filter convolution wn = np.random.randn(n+N) # generate white noise fwn = filt.apply_filter(wn,a,b) return normalize(fwn[-n:])
def ABABl(f,l,timbre,t,fs): Np = int(fs/f/2.*0.8) A = np.random.randn(Np) B = np.random.randn(Np) C = l*A+(1-l)*B y = ABAB(A,C,f,t) (af,bf) = filt.make_low_pass_butterworth(timbre, 6,fs) y = filt.apply_filter(y,af,bf) return y[0:len(t)]
def make_act_control(ratio,f,timbre,exp): # loading parameters duration_stim = exp.duration_stim rate = exp.rate # function time_stim = make_time(duration_stim,rate) #fir,N,nyq_rate = filt.make_low_pass_FIR(f_c,f_w,rate) if (timbre == exp.DARK): f_c = exp.fc_ACT_DARK a,b = filt.make_low_pass_butterworth(f_c, 6,rate) x= filt.apply_filter(act(0,1/float(ratio),f,time_stim),a,b) y= filt.apply_filter(act(1,1/float(ratio),f,time_stim),a,b) return np.divide(x,np.std(y)) # cross normalization if (timbre == exp.BROAD): x= act(0,1/float(ratio),f,time_stim) y= act(1,1/float(ratio),f,time_stim) return np.divide(x,np.std(y)) # cross normalization
def make_act_target(ratio,f,timbre, exp): # loading parameters duration_stim = exp.duration_stim rate = exp.rate # function time_stim = make_time(duration_stim,rate) #fir,N,nyq_rate = filt.make_low_pass_FIR(f_c,f_w,rate) y = act(1,1/float(ratio),f,time_stim) if (timbre == exp.DARK): f_c = exp.fc_ACT_DARK a,b = filt.make_low_pass_butterworth(f_c, 6,rate) z= normalize(filt.apply_filter(y,a,b)) if (timbre == exp.BROAD): z = normalize(y) return z