# In[16]: import cv2 import numpy as np from save import result from filtering import rgb2grayscale img = cv2.imread("imori.jpg").astype(np.float) H, W, C = img.shape b = img[:, :, 0].copy() g = img[:, :, 1].copy() r = img[:, :, 2].copy() gray_img = rgb2grayscale(r, g, b).reshape(128, -1) result(gray_img.astype(np.uint8), "38_grayscale") # In[10]: # Discrete cosine transformation T = 8 K = 8 F = np.zeros_like(gray_img, dtype=np.float32) def weight(x, y, u, v): if u == 0: cu = 1 / np.sqrt(2) else: cu = 1
# coding: utf-8 # In[1]: import cv2 import numpy as np from save import result from filtering import filtering, rgb2grayscale img = cv2.imread("imori.jpg") b = img[:, :, 0].copy() g = img[:, :, 1].copy() r = img[:, :, 2].copy() gray_img = rgb2grayscale(r, g, b) # In[5]: # diferrential filter ## vertical K_v = np.array([[0, -1, 0], [0, 1, 0], [0, 0, 0]]) ## horizontal K_h = np.array([[0, 0, 0], [-1, 1, 0], [0, 0, 0]]) out_v = filtering(gray_img, K_v, padding=True) out_h = filtering(gray_img, K_h, padding=True) # In[6]: result(out_v, "14_v") result(out_h, "14_h")