def test_1d_0P(): global inf f = KalmanFilter (dim_x=2, dim_z=1) inf = InformationFilter (dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) f.F = (np.array([[1., 1.], [0., 1.]])) # state transition matrix f.H = np.array([[1., 0.]]) # Measurement function f.R = np.array([[5.]]) # state uncertainty f.Q = np.eye(2)*0.0001 # process uncertainty f.P = np.diag([20., 20.]) inf.x = f.x.copy() inf.F = f.F.copy() inf.H = np.array([[1.,0.]]) # Measurement function inf.R_inv *= 1./5 # state uncertainty inf.Q = np.eye(2)*0.0001 inf.P_inv = 0.000000000000000000001 #inf.P_inv = inv(f.P) m = [] r = [] r2 = [] zs = [] for t in range (50): # create measurement = t plus white noise z = t + random.randn()* np.sqrt(5) zs.append(z) # perform kalman filtering f.predict() f.update(z) inf.predict() inf.update(z) try: print(t, inf.P) except: pass # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) #assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}' if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_1d(): f = KalmanFilter(dim_x=2, dim_z=1) inf = InformationFilter(dim_x=2, dim_z=1) # ensure __repr__ doesn't assert str(inf) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) inf.x = f.x.copy() f.F = (np.array([[1.,1.], [0.,1.]])) # state transition matrix inf.F = f.F.copy() f.H = np.array([[1.,0.]]) # Measurement function inf.H = np.array([[1.,0.]]) # Measurement function f.R *= 5 # state uncertainty inf.R_inv *= 1./5 # state uncertainty f.Q *= 0.0001 # process uncertainty inf.Q *= 0.0001 m = [] r = [] r2 = [] zs = [] s = Saver(inf) for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.update(z) f.predict() inf.update(z) inf.predict() # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) print(inf.y) print(inf.SI) s.save() assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12 if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_1d(): global inf f = KalmanFilter(dim_x=2, dim_z=1) inf = InformationFilter(dim_x=2, dim_z=1) # ensure __repr__ doesn't assert str(inf) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) inf.x = f.x.copy() f.F = (np.array([[1.,1.], [0.,1.]])) # state transition matrix inf.F = f.F.copy() f.H = np.array([[1.,0.]]) # Measurement function inf.H = np.array([[1.,0.]]) # Measurement function f.R *= 5 # state uncertainty inf.R_inv *= 1./5 # state uncertainty f.Q *= 0.0001 # process uncertainty inf.Q *= 0.0001 m = [] r = [] r2 = [] zs = [] s = Saver(inf) for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.update(z) f.predict() inf.update(z) inf.predict() # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) print(inf.y) s.save() assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12 if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_1d_0P(): global inf f = KalmanFilter(dim_x=2, dim_z=1) inf = InformationFilter(dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) f.F = (np.array([[1., 1.], [0., 1.]])) # state transition matrix f.H = np.array([[1., 0.]]) # Measurement function f.R = np.array([[5.]]) # state uncertainty f.Q = np.eye(2) * 0.0001 # process uncertainty f.P = np.diag([20., 20.]) inf.x = f.x.copy() inf.F = f.F.copy() inf.H = np.array([[1., 0.]]) # Measurement function inf.R_inv *= 1. / 5 # state uncertainty inf.Q = np.eye(2) * 0.0001 inf.P_inv = 0.000000000000000000001 #inf.P_inv = inv(f.P) m = [] r = [] r2 = [] zs = [] for t in range(50): # create measurement = t plus white noise z = t + random.randn() * np.sqrt(5) zs.append(z) # perform kalman filtering f.predict() f.update(z) inf.predict() inf.update(z) try: print(t, inf.P) except: pass # save data r.append(f.x[0, 0]) r2.append(inf.x[0, 0]) m.append(z) #assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}' if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_1d_0P(): f = KalmanFilter (dim_x=2, dim_z=1) inf = InformationFilter (dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) f.F = (np.array([[1.,1.], [0.,1.]])) # state transition matrix f.H = np.array([[1.,0.]]) # Measurement function f.R = np.array([[5.]]) # state uncertainty f.Q = np.eye(2)*0.0001 # process uncertainty f.P = np.diag([20., 20.]) inf.x = f.x.copy() inf.F = f.F.copy() inf.H = np.array([[1.,0.]]) # Measurement function inf.R_inv *= 1./5 # state uncertainty inf.Q *= 0.0001 inf.P_inv = 0 #inf.P_inv = inv(f.P) m = [] r = [] r2 = [] zs = [] for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.predict() f.update(z) inf.predict() inf.update(z) # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) #assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12 if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_1d_0P(): f = KalmanFilter (dim_x=2, dim_z=1) inf = InformationFilter (dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) inf.x = f.x.copy() f.F = (np.array([[1.,1.], [0.,1.]])) # state transition matrix inf.F = f.F.copy() f.H = np.array([[1.,0.]]) # Measurement function inf.H = np.array([[1.,0.]]) # Measurement function f.R = 5. # state uncertainty inf.R_inv = 1./5 # state uncertainty f.Q = 0.0001 # process uncertainty inf.Q = 0.0001 f.P *= 20 inf.P_inv = 0 #inf.P_inv = inv(f.P) m = [] r = [] r2 = [] zs = [] for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.predict() f.update(z) inf.predict() inf.update(z) # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z)