def __init__(self, glob_params, ejecta_params, source_name, **kwargs): super(MKN, self).__init__(**kwargs) # initializing the global properties of the source print('I am initializing the global properties of the source') SP = sp.SourceProperties(source_name) self.D = SP.D self.view_angle = SP.view_angle # initialize the angular distribution print('I am initializing the angles') self.n_slices = glob_params['n slices'] self.dist_slices = glob_params['dist slices'] self.AD = ad.AngularDistribution(self.dist_slices, self.n_slices) self.angular_distribution, self.omega_distribution = self.AD( self.n_slices / 2, glob_params['omega frac'] ) # due to the symmetry abount the equatorial plane, the number of independent slices is half # initialize the filters print('I am initializing the filters') if (source_name == 'default'): self.FT = ft.Filters("properties") else: self.FT = ft.Filters("measures") self.dic_filt, self.lambda_vec, self.mag = self.FT( SP.filter_data_folder, glob_params["time min"] * units.sec2day + SP.t0, glob_params["time max"] * units.sec2day + SP.t0) #initialize the time print('I am initializing the global time') self.time_min = glob_params['time min'] self.time_max = glob_params['time max'] self.n_time = glob_params['n time'] self.tscale = glob_params['scale for t'] self.t0 = SP.t0 if (self.tscale == "measures" and source_name == 'default'): print('') print("no measures available to set the time (default option)") print("please use linear or log scale") exit() self.time = SP.init_time(self.tscale, self.time_min, self.time_max, self.n_time, self.mag) #initialize the observer location print('I am initializing the observer orientation') self.FF = op.ObserverProjection(self.n_slices, self.dist_slices) # register the geometry of the ejecta and create an Ejecta object print('I am initializing the components') self.E = ej.Ejecta(len(ejecta_params.keys()), ejecta_params.keys(), ejecta_params)
def __init__(self, redditHelper, config): logging.info("Initializing aggregator...") self.redditHelper = redditHelper self.submissions = [] self.comments = [] self.subreddits = self.redditHelper.userSubreddits() self.filters = filters.Filters(config) self.postMan = postman.PostMan(config.get("response")) self.dumper = dumper.Dumper(config)
def __init__(self): QThread.__init__(self) self.display_size = 2048 self.buffer_size = 256 self.rband_buffer_size = 1024 self.display_buf = deque([0]*self.display_size) self.data_buf = deque([0]*self.buffer_size) self.display_filters = filters.Filters(self.display_size,8,20) self.analyze_filters = filters.Filters(self.buffer_size,5,12) self.rband_buf1 = deque([0]*self.rband_buffer_size) self.rband_buf2 = deque([0]*self.rband_buffer_size) self.rband_buf3 = deque([0]*self.rband_buffer_size) self.analysis = Analysis() self.respiratory_analysis1 = Analysis() self.respiratory_analysis2 = Analysis() self.respiratory_analysis3 = Analysis() self.count = 0 self.board = None
def _navigate(self): '''Ensure this particular filter report is always selected by "guessing" the _sub_url here''' # FIXME: magic here if re.match(pages.reports.url_pattern, SE.current_url) is None: # not on the reports page -> create a report for this filter name filters.Filters().get_filter(self._filter_name).run_report() # https://sam.example.com/sam/splice_reports/filters/2/reports -> sam/splice_reports/filters/2/reports self._sub_url = '/'.join(SE.current_url.split('/')[3:]) super(ReportPageObject, self)._navigate()
def filter(self, list, filtertext): #filtertext=self.filtertxt.GetValue() #filtered=filtertext.split() #self.filtertxt.SetValue(str(filtered)) fobj = filters.Filters() f = fobj.check_filter_validity(filtertext) if f == True: fexpression = filtertext.split() a = fobj.filter_data(list, fexpression) return a
def send_values(self, event): values = self.filtertxt.GetValue() fobj = filters.Filters() f = fobj.check_filter_validity(values) if f == True: self.parent.get_filter_values(values) self.Destroy() else: textstyle = wx.TextAttr() textstyle.SetBackgroundColour(wx.RED) self.filtertxt.SetDefaultStyle(textstyle) self.filtertxt.AppendText(' ')
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import angular_distribution as ad import filters as ft import lightcurve as lc import observer_projection as op import units import ejecta as ej import sys # initialize the filters print("Initialising filters") FT = ft.Filters("measures") dic_filt,lambda_vec,mag = FT() time_min = 3600. # time_max = 2000000. # n_time = 20 # initialize global time time = np.logspace(np.log10(time_min),np.log10(time_max),num=n_time) # read the chain and plot the maximum likelihood point, for now chain = np.genfromtxt('quick_test/posterior.dat',names=True) # set of global parameters not to be fit glob_params = {'v_min':1.e-7, 'n_v':10, 'vscale':'linear',
def setup(self): # CONFIG PARAMETERS try: with open('config.ini') as self._cfg: self._config.read_file(self._cfg) self._hname = self._config.get("TestHost", "hostname") self._dd_dir = self._config.get("Dir", "dd_dir") self._src = self._config.get("Sources", "sources") self._a_filters = (self._config.get("Filters", "filters")).split(', ') self._n_batch = self._config.get("Batch", "n_batch") if self._n_batch: self._n_batch = int(self._n_batch) print("\n[NOTICE] Check your settings in 'config.ini' file. ") except (IOError, OSError): print("[ERROR] Unable to find config file (config.ini)") sys.exit() # NETWORK TEST try: print("\n>>Test network connection...") self._hostname = hostname.Test_hostname() self._hostname.set_hostname(self._hname) self._hostname.get_hostname() self._hostname.test_conn() except (IOError, OSError): print("[ERROR] Unable to get test_hostname.") # Logging... self._setup_log = utility.Logger() self._setup_log.set_file('log.txt') self._setup_log.get_file() # BEGIN SETUP ######################### try: # DIRECTORY self._dd_directory = directory.Download_dir() self._dd_directory.set_directory(self._dd_dir) self._dd_directory = self._dd_directory.get_directory() # BATCH FOR TASK POOL self._batch = batch.Batch() self._batch.set_batch(self._n_batch) self._batch = self._batch.get_batch() # FILTERS self._filters = filters.Filters() self._filters.set_filters(self._a_filters) self._filters = self._filters.get_filters() # SOURCES # There is no need to set a default action. If the source file doesn't exist or it's corrupted, # the script will terminate its operation instantly. print("\n>>Source File:") print(self._src) self._sources = sources.Sources() self._sources.set_urls(self._src) self._sources = self._sources.get_urls() print("\n>>Options") print("Download directory: ", self._dd_dir) # If filters is empty in config.ini, don't apply filters. if self._a_filters[0] == '' and len(self._a_filters) == 1: self._filtered_urls = self._sources print("No filter rules applied.\n") else: print("Filter rules: ", self._a_filters, "\n") self._filtered_urls = utility.Filtered_urls() self._filtered_urls = self._filtered_urls.apply_filters( self._a_filters, self._sources) # for logging... self._conf_log = "\n[CONFIG] [time: " + str( (datetime.now() ).strftime('%Y/%m/%d %H:%M:%S')) + "] Setup complete. [OK]" self._setup_log.logger(self._conf_log) except BaseException: print("[ERROR] Unable to complete script setup.") self._fail_conf_log = "\n[ERROR] [time: " + str( (datetime.now() ).strftime('%Y/%m/%d %H:%M:%S')) + "] Setup Failed!!!" self._setup_log.logger(self._fail_conf_log) sys.exit() return self._filtered_urls, self._dd_directory, self._n_batch
import cv2 import filters if __name__ == '__main__': src = cv2.imread('../RAWPIC/3.jpg', cv2.IMREAD_COLOR) my_filter = filters.Filters(src) show = my_filter.bilateral_filter(10.0, 4.0, 4) cv2.imwrite('ans.jpg', show)
import time, glob, requests, cv2, operator, random, datetime, up, filters, secrets, time, os import numpy as np colors = { 'happiness': (0, 255, 0), 'sadness': (255, 255, 0), 'anger': (255, 0, 0) } filters = filters.Filters() def processRequest(json, data, headers, params): headers = dict() headers['Ocp-Apim-Subscription-Key'] = secrets.OXFORD headers['Content-Type'] = 'application/octet-stream' retries = 0 maxNumRetries = 10 result = None while True: response = requests.request( 'post', 'https://api.projectoxford.ai/emotion/v1.0/recognize', json=json, data=data, headers=headers, params=params) if response.status_code == 429: print "Message: %s" % (response.json()['error']['message']) if retries <= maxNumRetries: time.sleep(1)
def __init__(self): self.filt = filters.Filters() self.data_buffer = [] self.count = 0 self.udp_packet = []
import requests import picamera import time import json import utils import filters import sys from PIL import ImageEnhance, Image, ImageChops filter_num_str = sys.argv[1] filter_num = int(filter_num_str) img = Image.open('/home/pi/Desktop/ohsnap/img/snap.jpg') filters = filters.Filters(img) if (filter_num == 1): filters.Enhance() elif (filter_num == 2): filters.BW() elif (filter_num == 3): filters.custom1() elif (filter_num == 4): filters.custom2() elif (filter_num == 5): filters.satura() else: filters.Enhance() filters.BW() filters.custom1() filters.custom2() filters.satura()
def run(options): # Start time start_time = datetime.datetime.now() # Print welcome message and information helper.welcome(__version__) # Read configuration file config = parsers.read_config_file(options.config) # Read input data data = helper.read_data(options, config) # Initialize output files out_included = open('{}_denovo_candidates.txt'.format(options.output), 'w') out_excluded = open('{}_filtered_out.txt'.format(options.output), 'w') # Decide whether to write MaxEntScan and ExAC columns write_maxentscan = config['MAXENTSCAN_DATA_FILE'] != '' write_exac = config['EXAC_DATA_FILE'] != '' # Write output file headers helper.output_header(out_included, write_maxentscan, write_exac, False) if options.full_details: helper.output_header(out_excluded, write_maxentscan, write_exac, True) else: helper.output_header_simplified(out_excluded) # Initialize Filters object filt = filters.Filters(options.full_details) # Initialize counters counter = 0 counter_included = 0 counter_excluded = 0 # Initialize progress info helper.init_progress() # Iterate through the variants called in the child for var_key, variants in data['child_var'].iteritems(): for variant in variants: counter += 1 # Print progress info helper.print_progress(counter, len(data['child_var'])) # MaxEntScan scores of the variant maxentscan_scores = data['maxentscan'].get_scores( var_key) if data['maxentscan'] is not None else None # ExAC column values of the variant if data['exac'] is None: exac_values = None else: gene = variant['gene'] exac_values = data['exac'][gene] if gene in data[ 'exac'] else {} # Apply filters to the variant result = filt.apply_filters(var_key, variant, config, data) # Output result if result['filter'] == '.': helper.output(out_included, var_key, variant, result, maxentscan_scores, exac_values, False) counter_included += 1 else: if options.full_details: helper.output(out_excluded, var_key, variant, result, maxentscan_scores, exac_values, True) else: helper.output_simplified(out_excluded, var_key, variant, result) counter_excluded += 1 # Finalize progress info helper.finalize_progress() # Close output files out_included.close() out_excluded.close() # Runtime run_time = str(datetime.datetime.now() - start_time) # Print goodbye message and information helper.goodbye(counter_included, counter_excluded, options.output, run_time)
def __init__( self, # number of different components of the ejecta Nshell, # dictionary of global parameters defining basic properties of the ejecta glob_params, # dictionary of global parameters defining basic properties of the ejecta to be sampled glob_vars, # dictionary of ejecta parameters defining its composition and geometry ejecta_params, # dictionary of shell parameters defining basic properties of the shell shell_params, source_name, **kwargs): super(MKN, self).__init__(**kwargs) # initializing the global properties of the source print('I am initializing the global properties of the source') SP = sp.SourceProperties(source_name) self.D = SP.D self.view_angle = SP.view_angle # initialize the angular distribution print('I am initializing the angles') self.n_slices = glob_params['n slices'] self.dist_slices = glob_params['dist slices'] self.AD = ad.AngularDistribution(self.dist_slices, self.n_slices) self.angular_distribution, self.omega_distribution = self.AD( self.n_slices / 2 ) # due to the symmetry abount the equatorial plane, the number of independent slices is half # initialize the filters print('I am initializing the filters') if (source_name == 'default'): self.FT = ft.Filters("properties") else: self.FT = ft.Filters("measures") self.dic_filt, self.lambda_vec, self.mag = self.FT( SP.filter_data_folder) #initialize the time print('I am initializing the global time') self.time_min = glob_params['time min'] self.time_max = glob_params['time max'] self.n_time = glob_params['n time'] self.tscale = glob_params['scale for t'] self.t0 = SP.t0 if (self.tscale == "measures" and source_name == 'default'): print('') print("no measures available to set the time (default option)") print("please use linear or log scale") exit() self.time = SP.init_time(self.tscale, self.time_min, self.time_max, self.n_time, self.mag) #initialize the observer location print('I am initializing the observer orientation') self.FF = op.ObserverProjection(self.n_slices, self.dist_slices) # self.flux_factor = self.FF(SP.view_angle) # register the geometry of the ejecta and create an Ejecta object self.glob_params = glob_params self.glob_vars = glob_vars self.ejecta_params = ejecta_params self.shell_params = shell_params self.ejecta = ej.Ejecta(len(self.ejecta_params), self.ejecta_params.keys(), self.ejecta_params) print('I am initializing the components') self.E = ej.Ejecta(Nshell, self.ejecta_params.keys(), self.ejecta_params)
def __init__(self, options): self._filters = filters.Filters(options)