def main(args): if args.src_seq_length > args.max_position_embeddings: args.max_position_embeddings = args.src_seq_length if args.task.lower() in ['gigaword', 'blank']: finetune(args, train_valid_datasets_provider, {}, end_of_epoch_callback_provider=metrics_func_provider, forward_step=seq2seq_forward_step) else: raise NotImplementedError(args.task)
def main(args): if args.src_seq_length > args.max_position_embeddings: args.max_position_embeddings = args.src_seq_length if args.task.lower() in [ 'cnn_dm', 'cnn_dm_original', 'gigaword', 'blank', 'squad_generation', 'xsum', 'squad', 'squad_v1', 'extraction', 'cmrc' ]: finetune(args, train_valid_datasets_provider, {}, end_of_epoch_callback_provider=metrics_func_provider, forward_step=seq2seq_forward_step) else: raise NotImplementedError(args.task)
def main(args): model_kwargs = {} if args.task.lower( ) == 'wsc' and args.cloze_eval and not args.wsc_negative: from tasks.language_model.finetune import lm_forward_step finetune(args, train_valid_datasets_provider, model_kwargs, end_of_epoch_callback_provider=metrics_func_provider, forward_step=lm_forward_step) else: processor = PROCESSORS[args.task.lower()](args) pvp = PVPS[args.task.lower()] model_kwargs[ "model_type"] = "cloze" if args.cloze_eval else "classification" model_kwargs["multi_token"] = pvp.is_multi_token model_kwargs["num_labels"] = len(processor.get_labels()) finetune(args, train_valid_datasets_provider, model_kwargs, end_of_epoch_callback_provider=metrics_func_provider)
def main(args): model_kwargs = {} processor = PROCESSORS[args.task.lower()](args) pvp = PVPS[args.task.lower()](args, None, processor.get_labels(), args.seq_length, pattern_id=args.pattern_id, is_multi_token=args.multi_token, num_prompt_tokens=args.num_prompt_tokens) if args.continuous_prompt: model_kwargs["spell_length"] = pvp.spell_length if args.task.lower( ) == 'wsc' and args.cloze_eval and not args.wsc_negative: from tasks.language_model.finetune import lm_forward_step finetune(args, train_valid_datasets_provider, model_kwargs, end_of_epoch_callback_provider=metrics_func_provider, forward_step=lm_forward_step) else: if args.cloze_eval: multi_token = pvp.is_multi_token else: multi_token = args.task.lower() in MULTI_CHOICE_DATASETS args.multi_token = multi_token if not multi_token: model_kwargs[ "model_type"] = "multiple_choice" if args.cloze_eval else "classification" model_kwargs["multi_token"] = False model_kwargs["num_labels"] = len(processor.get_labels()) else: model_kwargs["model_type"] = "multiple_choice" model_kwargs["multi_token"] = True model_kwargs["num_labels"] = 1 finetune(args, train_valid_datasets_provider, model_kwargs, end_of_epoch_callback_provider=metrics_func_provider)
def main(args): """Main program.""" finetune(args, None, {}, end_of_epoch_callback_provider=metrics_func_provider, forward_step=lm_forward_step)