Пример #1
0
def test_end2end_cnv_w1a1_verify_dataflow_part():
    model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_ipstitch.onnx")
    x = np.zeros((1, 32, 32, 3), dtype=np.float32)
    inp_name = model.graph.input[0].name
    out_name = model.graph.output[0].name
    inp_dict = {inp_name: x}
    # cppsim
    model = model.transform(PrepareCppSim())
    model = model.transform(CompileCppSim())
    model = model.transform(SetExecMode("cppsim"))
    model.save(build_dir + "/end2end_cnv_w1a1_ipgen_cppsim.onnx")
    ret_cppsim = execute_onnx(model, inp_dict, True)
    res_cppsim = ret_cppsim[out_name]
    # node-by-node rtlsim
    model = model.transform(SetExecMode("rtlsim"))
    model = model.transform(PrepareRTLSim())
    model.save(build_dir + "/end2end_cnv_w1a1_ipgen_nodebynode_rtlsim.onnx")
    ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True)
    res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name]
    # whole-network (ip-stitched) rtlsim
    model.set_metadata_prop("exec_mode", "rtlsim")
    model.save(build_dir + "/end2end_cnv_w1a1_ipstitch_whole_rtlsim.onnx")
    # this is a particularly long-running test, set liveness thr. to unlimited
    os.environ["LIVENESS_THRESHOLD"] = "-1"
    ret_rtlsim_whole = execute_onnx(model, inp_dict, True)
    res_rtlsim_whole = ret_rtlsim_whole[out_name]
    assert np.isclose(res_cppsim, res_rtlsim_nodebynode).all()
    assert np.isclose(res_cppsim, res_rtlsim_whole).all()
Пример #2
0
def test_end2end_cnv_w1a1_fold_and_tlastmarker():
    model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_dataflow_model.onnx")
    fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
    # each tuple is (PE, SIMD, in_fifo_depth) for a layer
    folding = [
        (16, 3, 128),
        (32, 32, 128),
        (16, 32, 128),
        (16, 32, 128),
        (4, 32, 81),
        (1, 32, 2),
        (1, 4, 2),
        (1, 8, 128),
        (5, 1, 3),
    ]
    for fcl, (pe, simd, ififodepth) in zip(fc_layers, folding):
        fcl_inst = getCustomOp(fcl)
        fcl_inst.set_nodeattr("PE", pe)
        fcl_inst.set_nodeattr("SIMD", simd)
        fcl_inst.set_nodeattr("inFIFODepth", ififodepth)

    swg_layers = model.get_nodes_by_op_type("ConvolutionInputGenerator")
    for i in range(len(swg_layers)):
        swg_inst = getCustomOp(swg_layers[i])
        simd = folding[i][1]
        swg_inst.set_nodeattr("SIMD", simd)

    model = model.transform(InsertDWC())
    model = model.transform(InsertFIFO())
    model = model.transform(InsertTLastMarker())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(AnnotateResources("estimate"))
    model.save(build_dir + "/end2end_cnv_w1a1_folded.onnx")
Пример #3
0
def test_renaming():
    # load the onnx model
    raw_m = get_data("finn.data", "onnx/mnist-conv/model.onnx")
    model = ModelWrapper(raw_m)
    model = model.transform(InferShapes())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    # do some basic checks
    assert model.graph.input[0].name == "global_in"
    assert model.graph.output[0].name == "global_out"
    assert model.graph.node[1].op_type == "Conv"
    assert model.graph.node[1].name == "Conv_0"
    assert model.graph.node[1].input[1] == "Conv_0_param0"
    assert model.graph.node[6].op_type == "Add"
    assert model.graph.node[6].name == "Add_1"
    assert model.graph.node[6].input[1] == "Add_1_param0"
    # ensure running renaming twice still yields the same names
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    assert model.graph.node[1].op_type == "Conv"
    assert model.graph.node[1].name == "Conv_0"
    assert model.graph.node[1].input[1] == "Conv_0_param0"
    assert model.graph.node[6].op_type == "Add"
    assert model.graph.node[6].name == "Add_1"
    assert model.graph.node[6].input[1] == "Add_1_param0"
    # run renamed model to make sure we did not mess up the topology
    raw_i = get_data("finn.data", "onnx/mnist-conv/test_data_set_0/input_0.pb")
    raw_o = get_data("finn.data", "onnx/mnist-conv/test_data_set_0/output_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    output_tensor = onnx.load_tensor_from_string(raw_o)
    input_dict = {"global_in": np_helper.to_array(input_tensor)}
    output_dict = oxe.execute_onnx(model, input_dict)
    assert np.isclose(
        np_helper.to_array(output_tensor), output_dict["global_out"], atol=1e-3
    ).all()
Пример #4
0
def test_xnorpopcountmatmul():
    M = 1
    K = 3
    N = 3
    x = helper.make_tensor_value_info("x", TensorProto.FLOAT, [M, K])
    W = helper.make_tensor_value_info("W", TensorProto.FLOAT, [K, N])
    out = helper.make_tensor_value_info("out", TensorProto.FLOAT, ["x", "y"])
    node_def = helper.make_node("XnorPopcountMatMul", ["x", "W"], ["out"],
                                domain="finn.custom_op.general")
    modelproto = helper.make_model(
        helper.make_graph([node_def], "test_model", [x], [out],
                          value_info=[W]))
    model = ModelWrapper(modelproto)
    model.set_tensor_datatype("x", DataType.BINARY)
    model.set_tensor_datatype("W", DataType.BINARY)
    W_data = np.asarray([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float32)
    model.set_initializer("W", W_data)
    # test shape inference
    model = model.transform(InferShapes())
    assert model.get_tensor_shape("out") == [M, N]
    # test datatype inference
    assert model.get_tensor_datatype("out") is DataType.FLOAT32
    model = model.transform(InferDataTypes())
    assert model.get_tensor_datatype("out") is DataType.UINT32
    # test execution
    x_data = np.asarray([[1, 0, 0]], dtype=np.float32)
    inp_dict = {"x": x_data}
    out_dict = oxe.execute_onnx(model, inp_dict)
    Wb = 2 * W_data - 1
    xb = 2 * x_data - 1
    rb = np.matmul(xb, Wb)
    assert (2 * out_dict["out"] - K == rb).all()
Пример #5
0
def step_resnet50_streamline_linear(model: ModelWrapper,
                                    cfg: DataflowBuildConfig):
    streamline_transformations = [
        AbsorbScalarMulAddIntoTopK(
        ),  # before MoveAddPastMul to avoid int->float 
        ConvertSubToAdd(),
        ConvertDivToMul(),
        RemoveIdentityOps(),
        CollapseRepeatedMul(),
        BatchNormToAffine(),
        ConvertSignToThres(),
        MoveAddPastMul(),
        MoveScalarAddPastMatMul(),
        MoveAddPastConv(),
        MoveScalarMulPastMatMul(),
        MoveScalarMulPastConv(),
        MoveScalarLinearPastInvariants(),
        MoveAddPastMul(),
        CollapseRepeatedAdd(),
        CollapseRepeatedMul(),
        AbsorbAddIntoMultiThreshold(),
        FactorOutMulSignMagnitude(),
        MoveMaxPoolPastMultiThreshold(),
        AbsorbMulIntoMultiThreshold(),
        Absorb1BitMulIntoMatMul(),
        Absorb1BitMulIntoConv(),
        RoundAndClipThresholds(),
    ]
    for trn in streamline_transformations:
        model = model.transform(trn)
        model = model.transform(GiveUniqueNodeNames())
    return model
Пример #6
0
def step_streamline(model: ModelWrapper, cfg: DataflowBuildConfig):
    """Run streamlining on given model. Streamlining involves moving floating point
    scale/shift parameters around, collapsing adjacent ones into a single parameter,
    then absorbing the scale/shift into the following `MultiThreshold` node.
    Streamlining requires careful topology design and cannot be applied to all
    topologies.
    """

    model = model.transform(MoveScalarLinearPastInvariants())
    model = model.transform(Streamline())
    need_lowering = len(model.get_nodes_by_op_type("Conv")) > 0
    if need_lowering:
        model = model.transform(LowerConvsToMatMul())
        model = model.transform(MakeMaxPoolNHWC())
        model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
    model = model.transform(Streamline())
    # absorb final add-mul nodes into TopK
    model = model.transform(absorb.AbsorbScalarMulAddIntoTopK())
    model = model.transform(InferDataLayouts())
    model = model.transform(RemoveUnusedTensors())

    if VerificationStepType.STREAMLINED_PYTHON in cfg._resolve_verification_steps(
    ):
        verify_step(model, cfg, "streamlined_python", need_parent=False)

    return model
Пример #7
0
def test_brevitas_debug():
    finn_onnx = "test_brevitas_debug.onnx"
    fc = get_test_model_trained("TFC", 2, 2)
    dbg_hook = bo.enable_debug(fc)
    bo.export_finn_onnx(fc, (1, 1, 28, 28), finn_onnx)
    model = ModelWrapper(finn_onnx)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(RemoveStaticGraphInputs())
    assert len(model.graph.input) == 1
    assert len(model.graph.output) == 1
    # load one of the test vectors
    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    # run using FINN-based execution
    input_dict = {"0": nph.to_array(input_tensor)}
    output_dict = oxe.execute_onnx(model, input_dict, return_full_exec_context=True)
    produced = output_dict[model.graph.output[0].name]
    # run using PyTorch/Brevitas
    input_tensor = torch.from_numpy(nph.to_array(input_tensor)).float()
    assert input_tensor.shape == (1, 1, 28, 28)
    # do forward pass in PyTorch/Brevitas
    expected = fc.forward(input_tensor).detach().numpy()
    assert np.isclose(produced, expected, atol=1e-3).all()
    # check all tensors at debug markers
    names_brevitas = set(dbg_hook.values.keys())
    names_finn = set(output_dict.keys())
    names_common = names_brevitas.intersection(names_finn)
    assert len(names_common) == 16
    for dbg_name in names_common:
        tensor_pytorch = dbg_hook.values[dbg_name].detach().numpy()
        tensor_finn = output_dict[dbg_name]
        assert np.isclose(tensor_finn, tensor_pytorch, atol=1e-5).all()
    os.remove(finn_onnx)
Пример #8
0
def test_streamline_fc(size, wbits, abits):
    if size == "LFC" and wbits == 2 and abits == 2:
        pytest.skip("No LFC-w2a2 present at the moment")
    if wbits > abits:
        pytest.skip("No wbits > abits cases at the moment")
    nname = "%s_%dW%dA" % (size, wbits, abits)
    finn_onnx = export_onnx_path + "/%s.onnx" % nname
    fc = get_test_model_trained(size, wbits, abits)
    bo.export_finn_onnx(fc, (1, 1, 28, 28), finn_onnx)
    model = ModelWrapper(finn_onnx)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    # load one of the test vectors
    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    # run using FINN-based execution
    input_dict = {"global_in": nph.to_array(input_tensor)}
    expected_ctx = oxe.execute_onnx(model, input_dict, True)
    expected = expected_ctx[model.graph.output[0].name]
    model = model.transform(Streamline())
    produced_ctx = oxe.execute_onnx(model, input_dict, True)
    produced = produced_ctx[model.graph.output[0].name]
    assert np.isclose(expected, produced, atol=1e-3).all()
Пример #9
0
def test_brevitas_fc_onnx_export_and_exec(size, wbits, abits):
    if size == "LFC" and wbits == 2 and abits == 2:
        pytest.skip("No LFC-w2a2 present at the moment")
    if wbits > abits:
        pytest.skip("No wbits > abits cases at the moment")
    nname = "%s_%dW%dA" % (size, wbits, abits)
    finn_onnx = export_onnx_path + "/%s.onnx" % nname
    fc = get_test_model_trained(size, wbits, abits)
    bo.export_finn_onnx(fc, (1, 1, 28, 28), finn_onnx)
    model = ModelWrapper(finn_onnx)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    # load one of the test vectors
    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    # run using FINN-based execution
    input_dict = {"0": nph.to_array(input_tensor)}
    output_dict = oxe.execute_onnx(model, input_dict)
    produced = output_dict[list(output_dict.keys())[0]]
    # run using PyTorch/Brevitas
    input_tensor = torch.from_numpy(nph.to_array(input_tensor)).float()
    assert input_tensor.shape == (1, 1, 28, 28)
    # do forward pass in PyTorch/Brevitas
    expected = fc.forward(input_tensor).detach().numpy()
    assert np.isclose(produced, expected, atol=1e-3).all()
Пример #10
0
def test_end2end_tfc_w1a2_verify_dataflow_part():
    model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_ipstitch.onnx")
    x = np.zeros((1, 784), dtype=np.float32)
    inp_name = model.graph.input[0].name
    out_name = model.graph.output[0].name
    inp_dict = {inp_name: x}
    # npysim
    model = model.transform(CodeGen_npysim())
    model = model.transform(Compile())
    model = model.transform(SetExecMode("npysim"))
    model.save(build_dir + "/end2end_tfc_w1a2_ipstitch_npysim.onnx")
    ret_npysim = execute_onnx(model, inp_dict, True)
    res_npysim = ret_npysim[out_name]
    # node-by-node rtlsim
    model = model.transform(SetExecMode("rtlsim"))
    getCustomOp(model.graph.node[0]).set_nodeattr("rtlsim_trace", "default")
    getCustomOp(model.graph.node[1]).set_nodeattr("rtlsim_trace", "default")
    getCustomOp(model.graph.node[2]).set_nodeattr("rtlsim_trace", "default")
    getCustomOp(model.graph.node[3]).set_nodeattr("rtlsim_trace", "default")
    model.save(build_dir + "/end2end_tfc_w1a2_ipstitch_nodebynode_rtlsim.onnx")
    ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True)
    res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name]
    # whole-network (ip-stitched) rtlsim
    model.set_metadata_prop("exec_mode", "rtlsim")
    model.set_metadata_prop("rtlsim_trace", "whole_trace.vcd")
    model.save(build_dir + "/end2end_tfc_w1a2_ipstitch_whole_rtlsim.onnx")
    ret_rtlsim_whole = execute_onnx(model, inp_dict, True)
    res_rtlsim_whole = ret_rtlsim_whole[out_name]
    assert np.isclose(res_npysim, res_rtlsim_nodebynode).all()
    assert np.isclose(res_npysim, res_rtlsim_whole).all()
Пример #11
0
def test_move_chw_add_past_conv(idim, k, s, ich, och):
    odim = compute_conv_output_dim(idim, k, s)

    ishape = [1, ich, idim, idim]
    oshape = [1, och, odim, odim]
    add_param_shape = [1, ich, 1, 1]
    conv_param_shape = [och, ich, k, k]

    inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, ishape)
    outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, oshape)
    a0 = helper.make_tensor_value_info("a0", TensorProto.FLOAT,
                                       add_param_shape)
    a1 = helper.make_tensor_value_info("a1", TensorProto.FLOAT,
                                       conv_param_shape)

    conv_config = {}
    conv_config["dilations"] = [1, 1]
    conv_config["group"] = 1
    conv_config["kernel_shape"] = [k, k]
    conv_config["pads"] = [0, 0, 0, 0]
    conv_config["strides"] = [s, s]

    add_node = helper.make_node("Add", ["inp", "a0"], ["add_out"])
    conv_node = helper.make_node("Conv", ["add_out", "a1"], ["outp"],
                                 **conv_config)

    model = helper.make_model(
        helper.make_graph(
            nodes=[add_node, conv_node],
            name="move-add-graph",
            inputs=[inp],
            outputs=[outp],
            value_info=[a0, a1],
        ))

    model = ModelWrapper(model)
    # initialize model
    a0_values = np.random.uniform(
        low=0, high=1, size=tuple(add_param_shape)).astype(np.float32)
    model.set_initializer("a0", a0_values)
    a1_values = np.random.uniform(
        low=0, high=1, size=tuple(conv_param_shape)).astype(np.float32)
    model.set_initializer("a1", a1_values)

    model = model.transform(InferShapes())

    # execution before transformation
    inp_values = np.random.uniform(low=0, high=1,
                                   size=tuple(ishape)).astype(np.float32)
    idict = {model.graph.input[0].name: inp_values}
    odict = oxe.execute_onnx(model, idict)
    y_before = odict[model.graph.output[0].name]

    model = model.transform(MoveAddPastConv())
    odict = oxe.execute_onnx(model, idict)
    y_after = odict[model.graph.output[0].name]

    assert np.isclose(y_before, y_after).all()
    assert model.graph.node[0].op_type == "Conv"
    assert model.graph.node[1].op_type == "Add"
Пример #12
0
 def test_add_pre_and_postproc(self, topology, wbits, abits):
     prev_chkpt_name = get_checkpoint_name(topology, wbits, abits,
                                           "import_and_tidy")
     model = load_test_checkpoint_or_skip(prev_chkpt_name)
     global_inp_name = model.graph.input[0].name
     ishape = model.get_tensor_shape(global_inp_name)
     # preprocessing: torchvision's ToTensor divides uint8 inputs by 255
     totensor_pyt = ToTensor()
     chkpt_preproc_name = get_checkpoint_name(topology, wbits, abits,
                                              "preproc")
     bo.export_finn_onnx(totensor_pyt, ishape, chkpt_preproc_name)
     assert os.path.isfile(chkpt_preproc_name)
     # join preprocessing and core model
     pre_model = ModelWrapper(chkpt_preproc_name)
     pre_model = pre_model.transform(InferShapes())
     pre_model = pre_model.transform(FoldConstants())
     model = model.transform(MergeONNXModels(pre_model))
     # add input quantization annotation: UINT8 for all BNN-PYNQ models
     global_inp_name = model.graph.input[0].name
     model.set_tensor_datatype(global_inp_name, DataType.UINT8)
     # postprocessing: insert Top-1 node at the end
     model = model.transform(InsertTopK(k=1))
     chkpt_name = get_checkpoint_name(topology, wbits, abits, "pre_post")
     # tidy-up again
     model = model.transform(InferShapes())
     model = model.transform(FoldConstants())
     model = model.transform(GiveUniqueNodeNames())
     model = model.transform(GiveReadableTensorNames())
     model = model.transform(InferDataTypes())
     model = model.transform(RemoveStaticGraphInputs())
     model.save(chkpt_name)
     assert os.path.isfile(chkpt_name)
Пример #13
0
def test_collapse_repeated_op():
    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2])
    add_param_0 = oh.make_tensor_value_info("add_param_0", TensorProto.FLOAT, [2])
    mul_param_0 = oh.make_tensor_value_info("mul_param_0", TensorProto.FLOAT, [2])
    add_param_1 = oh.make_tensor_value_info("add_param_1", TensorProto.FLOAT, [2])
    mul_param_1 = oh.make_tensor_value_info("mul_param_1", TensorProto.FLOAT, [2])
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2])
    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=[add_param_0, mul_param_0, add_param_1, mul_param_1],
            nodes=[
                oh.make_node("Add", ["top_in", "add_param_0"], ["middle_0"]),
                oh.make_node("Add", ["middle_0", "add_param_1"], ["middle_1"]),
                oh.make_node("Mul", ["middle_1", "mul_param_0"], ["middle_2"]),
                oh.make_node("Mul", ["middle_2", "mul_param_1"], ["top_out"]),
            ],
        )
    )
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())
    model.set_initializer("add_param_0", np.asarray([1, 3], dtype=np.float32))
    model.set_initializer("add_param_1", np.asarray([-1, 3], dtype=np.float32))
    model.set_initializer("mul_param_0", np.asarray([2, 4], dtype=np.float32))
    model.set_initializer("mul_param_1", np.asarray([2, -4], dtype=np.float32))
    new_model = model.transform(CollapseRepeatedAdd())
    new_model = new_model.transform(CollapseRepeatedMul())
    inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)}
    assert ox.compare_execution(model, new_model, inp_dict)
Пример #14
0
def test_brevitas_fc_onnx_export_and_exec(size, wbits, abits, pretrained):
    if size == "LFC" and wbits == 2 and abits == 2:
        pytest.skip(f"No LFC_{MAX_WBITS}W{MAX_ABITS}A present.")
    if wbits > abits:
        pytest.skip("No wbits > abits cases.")
    nname = f"{size}_{wbits}W{abits}A"
    finn_onnx = nname + ".onnx"
    fc, _ = model_with_cfg(nname.lower(), pretrained=pretrained)
    FINNManager.export_onnx(fc, FC_INPUT_SIZE, finn_onnx)
    model = ModelWrapper(finn_onnx)
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(DoubleToSingleFloat())
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(RemoveStaticGraphInputs())
    # load a random test vector
    input_tensor = np.random.uniform(MIN_INP_VAL,
                                     MAX_INP_VAL,
                                     size=FC_INPUT_SIZE).astype(np.float32)
    # run using FINN-based execution
    input_dict = {"0": input_tensor}
    output_dict = oxe.execute_onnx(model, input_dict)
    produced = output_dict[list(output_dict.keys())[0]]
    # run using PyTorch/Brevitas
    input_tensor = torch.from_numpy(input_tensor).float()
    # do forward pass in PyTorch/Brevitas
    expected = fc.forward(input_tensor).detach().numpy()
    assert np.isclose(produced, expected, atol=ATOL).all()
Пример #15
0
def test_brevitas_cnv_export_exec(wbits, abits):
    if wbits > abits:
        pytest.skip("No wbits > abits cases at the moment")
    cnv = get_test_model_trained("CNV", wbits, abits)
    bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path)
    model = ModelWrapper(export_onnx_path)
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(RemoveStaticGraphInputs())
    assert len(model.graph.input) == 1
    assert len(model.graph.output) == 1
    fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz")
    input_tensor = np.load(fn)["arr_0"].astype(np.float32)
    input_tensor = input_tensor / 255
    assert input_tensor.shape == (1, 3, 32, 32)
    # run using FINN-based execution
    input_dict = {model.graph.input[0].name: input_tensor}
    output_dict = oxe.execute_onnx(model, input_dict, True)
    produced = output_dict[model.graph.output[0].name]
    # do forward pass in PyTorch/Brevitas
    input_tensor = torch.from_numpy(input_tensor).float()
    expected = cnv.forward(input_tensor).detach().numpy()
    assert np.isclose(produced, expected, atol=1e-3).all()
    assert np.argmax(produced) == 3
    os.remove(export_onnx_path)
Пример #16
0
def test_onnx_exec_internal_rounding():
    inp0 = onnx.helper.make_tensor_value_info("inp0", onnx.TensorProto.FLOAT,
                                              [2, 2])
    inp1 = onnx.helper.make_tensor_value_info("inp1", onnx.TensorProto.FLOAT,
                                              [1])
    outp = onnx.helper.make_tensor_value_info("outp", onnx.TensorProto.FLOAT,
                                              [2, 2])
    mul_node = onnx.helper.make_node("Mul",
                                     inputs=["inp0", "inp1"],
                                     outputs=["outp"])
    graph = onnx.helper.make_graph(nodes=[mul_node],
                                   name="mul_graph",
                                   inputs=[inp0, inp1],
                                   outputs=[outp])

    model = onnx.helper.make_model(graph, producer_name="mul-model")
    model = ModelWrapper(model)
    idt = DataType.INT2
    model.set_tensor_datatype("inp0", idt)
    model.set_tensor_datatype("inp1", idt)
    model.transform(InferShapes())

    mul_value = np.asarray([-1], dtype=np.float32)
    inp_int = gen_finn_dt_tensor(idt, [2, 2])
    scale = np.random.uniform(low=0, high=1, size=(2, 2)).astype(np.float32)
    inp_rounded = (inp_int * scale) / (scale + 1e-7)
    input_dict = {"inp0": inp_rounded, "inp1": mul_value}
    output_dict = oxe.execute_onnx(model, input_dict)
    produced = output_dict["outp"]
    expected = np.multiply(inp_int, mul_value)
    assert (produced == expected).all()
Пример #17
0
def make_dupstreams_modelwrapper(ch, pe, idim, idt):
    shape = [1, idim, idim, ch]
    inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, shape)
    outp0 = helper.make_tensor_value_info("outp0", TensorProto.FLOAT, shape)
    outp1 = helper.make_tensor_value_info("outp1", TensorProto.FLOAT, shape)

    dupstrm_node = helper.make_node(
        "DuplicateStreams_Batch",
        ["inp"],
        ["outp0", "outp1"],
        domain="finn.custom_op.fpgadataflow",
        backend="fpgadataflow",
        NumChannels=ch,
        PE=pe,
        inputDataType=idt.name,
        numInputVectors=[1, idim, idim],
    )
    graph = helper.make_graph(nodes=[dupstrm_node],
                              name="graph",
                              inputs=[inp],
                              outputs=[outp0, outp1])

    model = helper.make_model(graph, producer_name="addstreams-model")
    model = ModelWrapper(model)

    model.set_tensor_datatype("inp", idt)

    model = model.transform(InferShapes())
    model = model.transform(InferDataTypes())

    return model
Пример #18
0
def test_move_scalar_add_past_matmul():
    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [1, 2])
    add_param = oh.make_tensor_value_info("add_param", TensorProto.FLOAT, [1, 1])
    matmul_param = oh.make_tensor_value_info("matmul_param", TensorProto.FLOAT, [2, 2])
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [1, 2])
    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=[add_param, matmul_param],
            nodes=[
                oh.make_node("Add", ["top_in", "add_param"], ["middle"]),
                oh.make_node("MatMul", ["middle", "matmul_param"], ["top_out"]),
            ],
        )
    )
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())
    model.set_initializer("add_param", np.asarray([[3]], dtype=np.float32))
    model.set_initializer(
        "matmul_param", np.asarray([[2, 4], [-1, 1]], dtype=np.float32)
    )
    new_model = model.transform(MoveScalarAddPastMatMul())
    inp_dict = {"top_in": np.asarray([[-1.0, 1.0]], dtype=np.float32)}
    assert ox.compare_execution(model, new_model, inp_dict)
    assert new_model.graph.node[0].op_type == "MatMul"
    assert new_model.graph.node[1].op_type == "Add"
    assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0]
Пример #19
0
def make_lookup_model(embeddings, ishape, idt, edt):
    num_embeddings, embedding_dim = embeddings.shape

    class LookupModel(nn.Module):
        def __init__(self, num_embeddings, embedding_dim):
            super().__init__()
            self.lookup = nn.Embedding(
                num_embeddings=num_embeddings, embedding_dim=embedding_dim
            )

        def forward(self, x):
            x = self.lookup(x)
            return x

    torch_model = LookupModel(num_embeddings, embedding_dim)
    input_t = torch.zeros(ishape, dtype=torch.int64)
    ret = FINNManager.export(torch_model, input_t=input_t, opset_version=11)
    model = ModelWrapper(ret)
    iname = model.graph.input[0].name
    ename = model.graph.node[0].input[0]
    model.set_tensor_datatype(iname, idt)
    eshape = model.get_tensor_shape(ename)
    assert tuple(eshape) == embeddings.shape
    model.set_initializer(ename, embeddings)
    model.set_tensor_datatype(ename, edt)
    model = model.transform(InferShapes())
    model = model.transform(InferDataTypes())
    return model
Пример #20
0
def test_quartznet_asr_4b(pretrained):
    finn_onnx = "quant_quartznet_perchannelscaling_4b.onnx"
    quartznet = quant_quartznet_perchannelscaling_4b(pretrained,
                                                     export_mode=True)
    quartznet.eval()
    FINNManager.export(quartznet, QUARTZNET_POSTPROCESSED_INPUT_SIZE,
                       finn_onnx)
    model = ModelWrapper(finn_onnx)
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(DoubleToSingleFloat())
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(RemoveStaticGraphInputs())
    #load a random test vector
    input_tensor = np.random.uniform(
        MIN_INP_VAL, MAX_INP_VAL,
        size=QUARTZNET_POSTPROCESSED_INPUT_SIZE).astype(np.float32)
    # run using FINN-based execution
    input_dict = {"0": input_tensor}
    output_dict = oxe.execute_onnx(model, input_dict)
    produced = output_dict[list(output_dict.keys())[0]]
    # run using PyTorch/Brevitas
    input_tensor = torch.from_numpy(input_tensor).float()
    # do forward pass in PyTorch/Brevitas
    expected = quartznet(input_tensor).detach().numpy()
    assert np.isclose(produced, expected, atol=ATOL).all()
Пример #21
0
def test_end2end_tfc_w1a2_verify_dataflow_part():
    model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_ipstitch.onnx")
    x = np.zeros((1, 784), dtype=np.float32)
    inp_name = model.graph.input[0].name
    out_name = model.graph.output[0].name
    inp_dict = {inp_name: x}
    # cppsim
    model = model.transform(PrepareCppSim())
    model = model.transform(CompileCppSim())
    model = model.transform(SetExecMode("cppsim"))
    model.save(build_dir + "/end2end_tfc_w1a2_ipstitch_cppsim.onnx")
    ret_cppsim = execute_onnx(model, inp_dict, True)
    res_cppsim = ret_cppsim[out_name]
    # node-by-node rtlsim
    model = model.transform(SetExecMode("rtlsim"))
    model = model.transform(PrepareRTLSim())
    model.save(build_dir + "/end2end_tfc_w1a2_ipstitch_nodebynode_rtlsim.onnx")
    ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True)
    res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name]
    # whole-network (ip-stitched) rtlsim
    model.set_metadata_prop("exec_mode", "rtlsim")
    model.save(build_dir + "/end2end_tfc_w1a2_ipstitch_whole_rtlsim.onnx")
    ret_rtlsim_whole = execute_onnx(model, inp_dict, True)
    res_rtlsim_whole = ret_rtlsim_whole[out_name]
    assert np.isclose(res_cppsim, res_rtlsim_nodebynode).all()
    assert np.isclose(res_cppsim, res_rtlsim_whole).all()
def test_brevitas_cnv_onnx_export_and_exec(wbits, abits, pretrained):
    if wbits > abits:
        pytest.skip("No wbits > abits cases.")
    nname = f"CNV_{wbits}W{abits}A"
    finn_onnx = nname + ".onnx"
    cnv, _ = model_with_cfg(nname.lower(), pretrained=pretrained)
    cnv.eval()
    # load a random int test vector
    input_a = np.random.randint(MIN_INP_VAL, MAX_INP_VAL, size=CNV_INPUT_SIZE).astype(np.float32)
    scale = 1. / 255
    input_t = torch.from_numpy(input_a * scale)
    input_qt = QuantTensor(
        input_t, scale=torch.tensor(scale), bit_width=torch.tensor(8.0), signed=False)
    FINNManager.export(cnv, export_path=finn_onnx, input_t=input_qt)
    model = ModelWrapper(finn_onnx)
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(DoubleToSingleFloat())
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(RemoveStaticGraphInputs())
    # run using FINN-based execution
    input_dict = {"0": input_a}
    output_dict = oxe.execute_onnx(model, input_dict)
    produced = output_dict[list(output_dict.keys())[0]]
    # do forward pass in PyTorch/Brevitas
    expected = cnv(input_t).detach().numpy()
    assert np.isclose(produced, expected, atol=ATOL).all()
Пример #23
0
def test_brevitas_QConv2d(dw, bias, in_channels, QONNX_export):
    ishape = (1, 32, 111, 111)
    if dw is True:
        groups = in_channels
        out_channels = in_channels
        kernel_size = 3
        padding = 1
        stride = 1
        w_shape = (32, 1, 3, 3)

    else:
        groups = 1
        out_channels = 64
        kernel_size = 1
        padding = 0
        stride = 1
        w_shape = (64, 32, 1, 1)

    b_conv = QuantConv2d(
        in_channels=in_channels,
        out_channels=out_channels,
        groups=groups,
        kernel_size=kernel_size,
        padding=padding,
        stride=stride,
        bias=bias,
        bias_quant_type=QuantType.FP,
        weight_bit_width=4,
        weight_quant_type=QuantType.INT,
        weight_scaling_impl_type=ScalingImplType.STATS,
        weight_scaling_stats_op=StatsOp.MAX,
        weight_scaling_per_output_channel=True,
        weight_restrict_scaling_type=RestrictValueType.LOG_FP,
        weight_narrow_range=True,
        weight_scaling_min_val=2e-16,
    )
    weight_tensor = gen_finn_dt_tensor(DataType["INT4"], w_shape)
    b_conv.weight = torch.nn.Parameter(torch.from_numpy(weight_tensor).float())
    b_conv.eval()
    if QONNX_export:
        m_path = export_onnx_path
        BrevitasONNXManager.export(b_conv, ishape, m_path)
        qonnx_cleanup(m_path, out_file=m_path)
        model = ModelWrapper(m_path)
        model = model.transform(ConvertQONNXtoFINN())
        model.save(m_path)
    else:
        bo.export_finn_onnx(b_conv, ishape, export_onnx_path)
    model = ModelWrapper(export_onnx_path)
    model = model.transform(InferShapes())
    inp_tensor = np.random.uniform(low=-1.0, high=1.0, size=ishape).astype(np.float32)
    idict = {model.graph.input[0].name: inp_tensor}
    odict = oxe.execute_onnx(model, idict, True)
    produced = odict[model.graph.output[0].name]
    inp_tensor = torch.from_numpy(inp_tensor).float()
    expected = b_conv.forward(inp_tensor).detach().numpy()

    assert np.isclose(produced, expected, atol=1e-3).all()
    os.remove(export_onnx_path)
Пример #24
0
def test_end2end_cnv_w1a1_convert_to_hls_layers():
    model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_streamlined.onnx")
    model = model.transform(to_hls.InferBinaryStreamingFCLayer(mem_mode))
    model = model.transform(to_hls.InferQuantizedStreamingFCLayer(mem_mode))
    model = model.transform(to_hls.InferConvInpGen())
    model = model.transform(to_hls.InferStreamingMaxPool())
    model = model.transform(MoveReshape())
    model.save(build_dir + "/end2end_cnv_w1a1_hls_layers.onnx")
Пример #25
0
def test_end2end_tfc_w1a2_import_and_tidy():
    model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_export.onnx")
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    model = model.transform(InferDataTypes())
    model.save(build_dir + "/end2end_tfc_w1a2_tidy.onnx")
Пример #26
0
def test_end2end_tfc_w1a1_convert_to_hls_layers():
    model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx")
    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
    model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
    model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
    model = model.transform(RoundAndClipThresholds())
    model = model.transform(to_hls.InferBinaryStreamingFCLayer())
    model.save(build_dir + "/end2end_tfc_w1a1_hls_layers.onnx")
Пример #27
0
def test_end2end_cnv_w1a1_import_and_tidy():
    model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_export.onnx")
    model = model.transform(DoubleToSingleFloat())
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    model.save(build_dir + "/end2end_cnv_w1a1_tidy.onnx")
Пример #28
0
def step_resnet50_set_fifo_depths(model: ModelWrapper,
                                  cfg: DataflowBuildConfig):
    """
    Depending on the auto_fifo_depths setting, do one of the following:
    * if auto_fifo_depths=True:  Run the `InsertAndSetFIFODepths` transformation
    to attempt to determine the FIFO sizes that provide full throughput. Involves
    running stitched-IP rtlsim and may take a long time.
    * if auto_fifo_depths=False:  Assume the folding config file contains FIFO
    sizes as well. Runs the `InsertFIFO` transformation, then
    `ApplyConfig(cfg.folding_config_file)`, and finally `RemoveShallowFIFOs`.
    Coherency with config file node naming is ensured by calling
    `GiveUniqueNodeNames`.
    """

    if cfg.auto_fifo_depths:
        model = model.transform(
            InsertAndSetFIFODepths(
                cfg._resolve_fpga_part(),
                cfg._resolve_hls_clk_period(),
                vivado_ram_style=cfg.large_fifo_mem_style.value,
            ))
    else:
        # assume folding cfg json contains FIFO sizes too
        # insert DWCs, FIFOs and run ApplyConfig once more
        model = model.transform(InsertDWC())
        # need to make sure all FIFOs are created so that their depth can be
        # set by ApplyConfig, so create_shallow_fifos=True
        model = model.transform(InsertFIFO(create_shallow_fifos=True))
        model = model.transform(GiveUniqueNodeNames())
        model = model.transform(GiveReadableTensorNames())
        if cfg.folding_config_file is not None:
            model = model.transform(ApplyConfig(cfg.folding_config_file))
        # remove any shallow FIFOs
        model = model.transform(RemoveShallowFIFOs())

    # extract the final configuration and save it as json
    hw_attrs = [
        "PE",
        "SIMD",
        "ram_style",
        "depth",
        "impl_style",
        "resType",
        "mem_mode",
        "runtime_writeable_weights",
    ]
    extract_model_config_to_json(model,
                                 cfg.output_dir + "/final_hw_config.json",
                                 hw_attrs)

    # after FIFOs are ready to go, call PrepareIP and HLSSynthIP again
    # this will only run for the new nodes (e.g. FIFOs and DWCs)
    model = model.transform(
        PrepareIP(cfg._resolve_fpga_part(), cfg._resolve_hls_clk_period()))
    model = model.transform(HLSSynthIP())
    model = model.transform(ReplaceVerilogRelPaths())
    return model
Пример #29
0
def test_conv_lowering_conv_1x1():

    np.random.seed(0)

    in_feature_dim_h = 7
    in_feature_dim_w = 7
    in_chn = 3
    kernel_size = 1
    out_feature_dim_h = in_feature_dim_h
    out_feature_dim_w = in_feature_dim_w

    input_shape = [1, in_chn, in_feature_dim_h, in_feature_dim_w]
    output_shape = [1, in_chn, out_feature_dim_h, out_feature_dim_w]

    conv_param_shape = [in_chn, in_chn, kernel_size, kernel_size]

    conv_config = {}
    conv_config["dilations"] = [1, 1]
    conv_config["group"] = 1
    conv_config["kernel_shape"] = [kernel_size, kernel_size]
    conv_config["pads"] = [0, 0, 0, 0]
    conv_config["strides"] = [1, 1]

    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT,
                                       input_shape)
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT,
                                        output_shape)

    value_info = [
        oh.make_tensor_value_info("p1", TensorProto.FLOAT, conv_param_shape)
    ]

    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=value_info,
            nodes=[
                oh.make_node("Conv", ["top_in", "p1"], ["top_out"],
                             **conv_config)
            ],
        ))
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())
    model.set_initializer("p1",
                          np.random.rand(*conv_param_shape).astype(np.float32))

    new_model = model.transform(LowerConvsToMatMul())
    inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)}

    assert oxe.compare_execution(model, new_model, inp_dict)
    assert new_model.graph.node[0].op_type == "Transpose"
    assert new_model.graph.node[1].op_type == "MatMul"
    assert new_model.graph.node[2].op_type == "Transpose"
    assert len(new_model.graph.node) == 3
Пример #30
0
def test_const_folding_shapes():
    lfc = get_test_model_untrained("LFC", 1, 1)
    bo.export_finn_onnx(lfc, (1, 1, 28, 28), export_onnx_path)
    model = ModelWrapper(export_onnx_path)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    assert model.graph.node[0].op_type == "Reshape"
    assert list(model.get_tensor_shape("0")) == [1, 1, 28, 28]
    assert list(model.get_tensor_shape("27")) == [1, 784]
    os.remove(export_onnx_path)