Пример #1
0
 def mult(self, mat, x, y, inc=False):
     with self.cfn.dat.vec as v:
         x.copy(v)
     firedrake.prolong(self.cfn, self.ffn)
     for bc in self.fbcs:
         bc.zero(self.ffn)
     with self.ffn.dat.vec_ro as v:
         if inc:
             y.axpy(1.0, v)
         else:
             v.copy(y)
Пример #2
0
 def mult(self, mat, x, y, inc=False):
     with self.cfn.dat.vec as v:
         x.copy(v)
     firedrake.prolong(self.cfn, self.ffn)
     for bc in self.fbcs:
         bc.zero(self.ffn)
     with self.ffn.dat.vec_ro as v:
         if inc:
             y.axpy(1.0, v)
         else:
             v.copy(y)
Пример #3
0
 def prolong(c, f):
     return firedrake.prolong(c, f)
Пример #4
0
 def interpolate(self, vector, out):
     Tc = vector.fun
     for Tinter in self.intermediate_Ts:
         fd.prolong(Tc, Tinter)
         Tc = Tinter
     fd.prolong(Tc, out)
Пример #5
0
 def prolong(c, f):
     return firedrake.prolong(c, f)
Пример #6
0
    u_in = firedrake.Function(V_in)

    input_name = os.path.splitext(args.input)[0]
    with firedrake.DumbCheckpoint(input_name, mode=firedrake.FILE_READ) as chk:
        timesteps, indices = chk.get_timesteps()
        chk.set_timestep(timesteps[-1], idx=indices[-1])

        chk.load(h_in, name='h')
        chk.load(u_in, name='u')

    if args.input_level < args.output_level:
        # Prolong the input data to the output function space
        h0 = firedrake.Function(Q)
        u0 = firedrake.Function(V)

        firedrake.prolong(h_in, h0)
        firedrake.prolong(u_in, u0)
    else:
        h0 = h_in
        u0 = u_in

# Otherwise create some rough initial data
else:
    h0 = interpolate(Constant(100), Q)
    s0 = icepack.compute_surface(h=h0, b=z_b)
    u0 = solver.diagnostic_solve(velocity=interpolate(
        as_vector((35 * x / Lx, 0)), V),
                                 thickness=h0,
                                 surface=s0,
                                 fluidity=A,
                                 friction=C)
Пример #7
0
        # increase dt until error > error_threshold
        while error < error_threshold:
            # error < error_threshold so increase dt by small amount
            dt = dt + step
            # NB: prolong does not copy so we must re-assign ref sol.
            fine = Function(V_fine).assign(ref)
            # Run the simulation with this dt
            try:
                sol = solver_CG(mesh,
                                el=cell_type,
                                space=space,
                                deg=degree,
                                T=0.50,
                                dt=dt)
                error = errornorm(ref, prolong(sol, fine))
            except Exception:
                # numerical instability occurred, exit with last stable dt
                dt = dt - step
                error = 1e10
            print(
                "For degree {}, the error is {} using a {} s timestep".format(
                    degree, error, dt))
        # error > error_threshold,
        print(
            "Highest stable dt is {} s for a degree {} for a an error threshold of {}"
            .format(dt, degree, error_threshold))
        dts[i, j] = dt

print("------FINISHED------")
print(dts)