Пример #1
0
    def _setup_solver(self):

        state = self.state
        H = state.parameters.H
        g = state.parameters.g
        beta = state.timestepping.dt*state.timestepping.alpha

        # Split up the rhs vector (symbolically)
        u_in, D_in = split(state.xrhs)

        W = state.W
        w, phi = TestFunctions(W)
        u, D = TrialFunctions(W)

        eqn = (
            inner(w, u) - beta*g*div(w)*D
            - inner(w, u_in)
            + phi*D + beta*H*phi*div(u)
            - phi*D_in
        )*dx

        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u rho solver
        self.uD = Function(W)

        # Solver for u, D
        uD_problem = LinearVariationalProblem(
            aeqn, Leqn, self.state.dy)

        self.uD_solver = LinearVariationalSolver(uD_problem,
                                                 solver_parameters=self.params,
                                                 options_prefix='SWimplicit')
Пример #2
0
    def _setup_solver(self):
        state = self.state
        H = state.parameters.H
        g = state.parameters.g
        beta = state.timestepping.dt*state.timestepping.alpha

        # Split up the rhs vector (symbolically)
        u_in, D_in = split(state.xrhs)

        W = state.W
        w, phi = TestFunctions(W)
        u, D = TrialFunctions(W)

        eqn = (
            inner(w, u) - beta*g*div(w)*D
            - inner(w, u_in)
            + phi*D + beta*H*phi*div(u)
            - phi*D_in
        )*dx

        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u rho solver
        self.uD = Function(W)

        # Solver for u, D
        uD_problem = LinearVariationalProblem(
            aeqn, Leqn, self.state.dy)

        self.uD_solver = LinearVariationalSolver(uD_problem,
                                                 solver_parameters=self.solver_parameters,
                                                 options_prefix='SWimplicit')
Пример #3
0
    def _setup_solver(self):
        state = self.state      # just cutting down line length a bit
        dt = state.timestepping.dt
        beta = dt*state.timestepping.alpha
        mu = state.mu

        # Split up the rhs vector (symbolically)
        u_in, p_in, b_in = split(state.xrhs)

        # Build the reduced function space for u,p
        M = MixedFunctionSpace((state.V[0], state.V[1]))
        w, phi = TestFunctions(M)
        u, p = TrialFunctions(M)

        # Get background fields
        bbar = state.bbar

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        b = -dot(k,u)*dot(k,grad(bbar))*beta + b_in

        # vertical projection
        def V(u):
            return k*inner(u,k)

        eqn = (
            inner(w, (u - u_in))*dx
            - beta*div(w)*p*dx
            - beta*inner(w,k)*b*dx
            + phi*div(u)*dx
        )

        if mu is not None:
            eqn += dt*mu*inner(w,k)*inner(u,k)*dx
        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u p solver
        self.up = Function(M)

        # Boundary conditions (assumes extruded mesh)
        dim = M.sub(0).ufl_element().value_shape()[0]
        bc = ("0.0",)*dim
        bcs = [DirichletBC(M.sub(0), Expression(bc), "bottom"),
               DirichletBC(M.sub(0), Expression(bc), "top")]

        # preconditioner equation
        L = self.L
        Ap = (
            inner(w,u) + L*L*div(w)*div(u) +
            phi*p/L/L
        )*dx

        # Solver for u, p
        up_problem = LinearVariationalProblem(
            aeqn, Leqn, self.up, bcs=bcs, aP=Ap)

        nullspace = MixedVectorSpaceBasis(M,
                                          [M.sub(0),
                                           VectorSpaceBasis(constant=True)])

        self.up_solver = LinearVariationalSolver(up_problem,
                                                 solver_parameters=self.params,
                                                 nullspace=nullspace)

        # Reconstruction of b
        b = TrialFunction(state.V[2])
        gamma = TestFunction(state.V[2])

        u, p = self.up.split()
        self.b = Function(state.V[2])

        b_eqn = gamma*(b - b_in +
                       dot(k,u)*dot(k,grad(bbar))*beta)*dx

        b_problem = LinearVariationalProblem(lhs(b_eqn),
                                             rhs(b_eqn),
                                             self.b)
        self.b_solver = LinearVariationalSolver(b_problem)
# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)

# Define coefficients
k = Constant(dt)
f = Constant((0, 0))

# Tentative velocity step
F1 = (1.0/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \
     (1.0/Re)*inner(grad(u), grad(v))*dx - inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

# Pressure update
a2 = inner(grad(p), grad(q)) * dx
L2 = -(1 / k) * div(u1) * q * dx

# Velocity update
a3 = inner(u, v) * dx
L3 = inner(u1, v) * dx - k * inner(grad(p1), v) * dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Create files for storing solution
Пример #5
0
uw = lambda u, v: (s(u)('+') * v('+') + s(u)('-') * v('-'))

if mesh.geometric_dimension() == 2:
    perp = lambda u: as_vector([-u[1], u[0]])
    p_uw = lambda u, v: perp(uw(u, v))
else:
    perp = lambda u: cross(CellNormal(mesh), u)
    out_n = CellNormal(mesh)
    p_uw = lambda u, v: (s(u)('+') * cross(out_n('+'), v('+')) + s(u)
                         ('-') * cross(out_n('-'), v('-')))

# Initial solve for vorticity for output
eta = TestFunction(W2)
q_ = TrialFunction(W2)
q_eqn = eta * q_ * Dn * dx + inner(perp(grad(eta)), un) * dx - eta * f * dx
q_p = LinearVariationalProblem(lhs(q_eqn), rhs(q_eqn), qn)
q_solver = LinearVariationalSolver(q_p,
                                   solver_parameters={
                                       "ksp_type": "preonly",
                                       "pc_type": "lu"
                                   })
q_solver.solve()

# Build advection, forcing forms
K = inner(un, un) / 3. + inner(un, unk) / 3. + inner(unk, unk) / 3.
Prhs = g * (0.5 * (Dn + Dp) + b) + 0.5 * K

# D advection solver
v, psi = TestFunctions(M)
F_, D_ = TrialFunctions(M)
D_bar = 0.5 * (Dn + D_)
    def _setup_solver(self):
        state = self.state      # just cutting down line length a bit
        Dt = state.timestepping.dt
        beta_ = Dt*state.timestepping.alpha
        cp = state.parameters.cp
        mu = state.mu
        Vu = state.spaces("HDiv")
        Vtheta = state.spaces("HDiv_v")
        Vrho = state.spaces("DG")

        # Store time-stepping coefficients as UFL Constants
        dt = Constant(Dt)
        beta = Constant(beta_)
        beta_cp = Constant(beta_ * cp)

        # Split up the rhs vector (symbolically)
        u_in, rho_in, theta_in = split(state.xrhs)

        # Build the reduced function space for u,rho
        M = MixedFunctionSpace((Vu, Vrho))
        w, phi = TestFunctions(M)
        u, rho = TrialFunctions(M)

        n = FacetNormal(state.mesh)

        # Get background fields
        thetabar = state.fields("thetabar")
        rhobar = state.fields("rhobar")
        pibar = thermodynamics.pi(state.parameters, rhobar, thetabar)
        pibar_rho = thermodynamics.pi_rho(state.parameters, rhobar, thetabar)
        pibar_theta = thermodynamics.pi_theta(state.parameters, rhobar, thetabar)

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        theta = -dot(k, u)*dot(k, grad(thetabar))*beta + theta_in

        # Only include theta' (rather than pi') in the vertical
        # component of the gradient

        # the pi prime term (here, bars are for mean and no bars are
        # for linear perturbations)

        pi = pibar_theta*theta + pibar_rho*rho

        # vertical projection
        def V(u):
            return k*inner(u, k)

        # specify degree for some terms as estimated degree is too large
        dxp = dx(degree=(self.quadrature_degree))
        dS_vp = dS_v(degree=(self.quadrature_degree))

        # add effect of density of water upon theta
        if self.moisture is not None:
            water_t = Function(Vtheta).assign(0.0)
            for water in self.moisture:
                water_t += self.state.fields(water)
            theta_w = theta / (1 + water_t)
            thetabar_w = thetabar / (1 + water_t)
        else:
            theta_w = theta
            thetabar_w = thetabar

        eqn = (
            inner(w, (state.h_project(u) - u_in))*dx
            - beta_cp*div(theta_w*V(w))*pibar*dxp
            # following does nothing but is preserved in the comments
            # to remind us why (because V(w) is purely vertical).
            # + beta_cp*jump(theta*V(w), n)*avg(pibar)*dS_v
            - beta_cp*div(thetabar_w*w)*pi*dxp
            + beta_cp*jump(thetabar_w*w, n)*avg(pi)*dS_vp
            + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx
            + beta*jump(phi*u, n)*avg(rhobar)*(dS_v + dS_h)
        )

        if mu is not None:
            eqn += dt*mu*inner(w, k)*inner(u, k)*dx
        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u rho solver
        self.urho = Function(M)

        # Boundary conditions (assumes extruded mesh)
        bcs = [DirichletBC(M.sub(0), 0.0, "bottom"),
               DirichletBC(M.sub(0), 0.0, "top")]

        # Solver for u, rho
        urho_problem = LinearVariationalProblem(
            aeqn, Leqn, self.urho, bcs=bcs)

        self.urho_solver = LinearVariationalSolver(urho_problem,
                                                   solver_parameters=self.solver_parameters,
                                                   options_prefix='ImplicitSolver')

        # Reconstruction of theta
        theta = TrialFunction(Vtheta)
        gamma = TestFunction(Vtheta)

        u, rho = self.urho.split()
        self.theta = Function(Vtheta)

        theta_eqn = gamma*(theta - theta_in
                           + dot(k, u)*dot(k, grad(thetabar))*beta)*dx

        theta_problem = LinearVariationalProblem(lhs(theta_eqn),
                                                 rhs(theta_eqn),
                                                 self.theta)
        self.theta_solver = LinearVariationalSolver(theta_problem,
                                                    options_prefix='thetabacksubstitution')
Пример #7
0
    def _setup_solver(self):
        state = self.state  # just cutting down line length a bit
        dt = state.dt
        beta_ = dt * self.alpha
        Vu = state.spaces("HDiv")
        Vb = state.spaces("theta")
        Vp = state.spaces("DG")

        # Store time-stepping coefficients as UFL Constants
        beta = Constant(beta_)

        # Split up the rhs vector (symbolically)
        self.xrhs = Function(self.equations.function_space)
        u_in, p_in, b_in = split(self.xrhs)

        # Build the reduced function space for u,p
        M = MixedFunctionSpace((Vu, Vp))
        w, phi = TestFunctions(M)
        u, p = TrialFunctions(M)

        # Get background fields
        bbar = state.fields("bbar")

        # Analytical (approximate) elimination of theta
        k = state.k  # Upward pointing unit vector
        b = -dot(k, u) * dot(k, grad(bbar)) * beta + b_in

        # vertical projection
        def V(u):
            return k * inner(u, k)

        eqn = (inner(w, (u - u_in)) * dx - beta * div(w) * p * dx -
               beta * inner(w, k) * b * dx + phi * div(u) * dx)

        if hasattr(self.equations, "mu"):
            eqn += dt * self.equations.mu * inner(w, k) * inner(u, k) * dx
        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u p solver
        self.up = Function(M)

        # Boundary conditions (assumes extruded mesh)
        # BCs are declared for the plain velocity space. As we need them in
        # a mixed problem, we replicate the BCs but for subspace of M
        bcs = [
            DirichletBC(M.sub(0), bc.function_arg, bc.sub_domain)
            for bc in self.equations.bcs['u']
        ]

        # Solver for u, p
        up_problem = LinearVariationalProblem(aeqn, Leqn, self.up, bcs=bcs)

        # Provide callback for the nullspace of the trace system
        def trace_nullsp(T):
            return VectorSpaceBasis(constant=True)

        appctx = {"trace_nullspace": trace_nullsp}
        self.up_solver = LinearVariationalSolver(
            up_problem,
            solver_parameters=self.solver_parameters,
            appctx=appctx)

        # Reconstruction of b
        b = TrialFunction(Vb)
        gamma = TestFunction(Vb)

        u, p = self.up.split()
        self.b = Function(Vb)

        b_eqn = gamma * (b - b_in + dot(k, u) * dot(k, grad(bbar)) * beta) * dx

        b_problem = LinearVariationalProblem(lhs(b_eqn), rhs(b_eqn), self.b)
        self.b_solver = LinearVariationalSolver(b_problem)
Пример #8
0
    def _setup_solver(self):
        import numpy as np

        state = self.state
        dt = state.dt
        beta_ = dt * self.alpha
        cp = state.parameters.cp
        Vu = state.spaces("HDiv")
        Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element()))
        Vtheta = state.spaces("theta")
        Vrho = state.spaces("DG")

        # Store time-stepping coefficients as UFL Constants
        beta = Constant(beta_)
        beta_cp = Constant(beta_ * cp)

        h_deg = Vrho.ufl_element().degree()[0]
        v_deg = Vrho.ufl_element().degree()[1]
        Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg))

        # Split up the rhs vector (symbolically)
        self.xrhs = Function(self.equations.function_space)
        u_in, rho_in, theta_in = split(self.xrhs)[0:3]

        # Build the function space for "broken" u, rho, and pressure trace
        M = MixedFunctionSpace((Vu_broken, Vrho, Vtrace))
        w, phi, dl = TestFunctions(M)
        u, rho, l0 = TrialFunctions(M)

        n = FacetNormal(state.mesh)

        # Get background fields
        thetabar = state.fields("thetabar")
        rhobar = state.fields("rhobar")
        exnerbar = thermodynamics.exner_pressure(state.parameters, rhobar,
                                                 thetabar)
        exnerbar_rho = thermodynamics.dexner_drho(state.parameters, rhobar,
                                                  thetabar)
        exnerbar_theta = thermodynamics.dexner_dtheta(state.parameters, rhobar,
                                                      thetabar)

        # Analytical (approximate) elimination of theta
        k = state.k  # Upward pointing unit vector
        theta = -dot(k, u) * dot(k, grad(thetabar)) * beta + theta_in

        # Only include theta' (rather than exner') in the vertical
        # component of the gradient

        # The exner prime term (here, bars are for mean and no bars are
        # for linear perturbations)
        exner = exnerbar_theta * theta + exnerbar_rho * rho

        # Vertical projection
        def V(u):
            return k * inner(u, k)

        # hydrostatic projection
        h_project = lambda u: u - k * inner(u, k)

        # Specify degree for some terms as estimated degree is too large
        dxp = dx(degree=(self.quadrature_degree))
        dS_vp = dS_v(degree=(self.quadrature_degree))
        dS_hp = dS_h(degree=(self.quadrature_degree))
        ds_vp = ds_v(degree=(self.quadrature_degree))
        ds_tbp = (ds_t(degree=(self.quadrature_degree)) +
                  ds_b(degree=(self.quadrature_degree)))

        # Add effect of density of water upon theta
        if self.moisture is not None:
            water_t = Function(Vtheta).assign(0.0)
            for water in self.moisture:
                water_t += self.state.fields(water)
            theta_w = theta / (1 + water_t)
            thetabar_w = thetabar / (1 + water_t)
        else:
            theta_w = theta
            thetabar_w = thetabar

        _l0 = TrialFunction(Vtrace)
        _dl = TestFunction(Vtrace)
        a_tr = _dl('+') * _l0('+') * (
            dS_vp + dS_hp) + _dl * _l0 * ds_vp + _dl * _l0 * ds_tbp

        def L_tr(f):
            return _dl('+') * avg(f) * (
                dS_vp + dS_hp) + _dl * f * ds_vp + _dl * f * ds_tbp

        cg_ilu_parameters = {
            'ksp_type': 'cg',
            'pc_type': 'bjacobi',
            'sub_pc_type': 'ilu'
        }

        # Project field averages into functions on the trace space
        rhobar_avg = Function(Vtrace)
        exnerbar_avg = Function(Vtrace)

        rho_avg_prb = LinearVariationalProblem(a_tr, L_tr(rhobar), rhobar_avg)
        exner_avg_prb = LinearVariationalProblem(a_tr, L_tr(exnerbar),
                                                 exnerbar_avg)

        rho_avg_solver = LinearVariationalSolver(
            rho_avg_prb,
            solver_parameters=cg_ilu_parameters,
            options_prefix='rhobar_avg_solver')
        exner_avg_solver = LinearVariationalSolver(
            exner_avg_prb,
            solver_parameters=cg_ilu_parameters,
            options_prefix='exnerbar_avg_solver')

        with timed_region("Gusto:HybridProjectRhobar"):
            rho_avg_solver.solve()

        with timed_region("Gusto:HybridProjectExnerbar"):
            exner_avg_solver.solve()

        # "broken" u, rho, and trace system
        # NOTE: no ds_v integrals since equations are defined on
        # a periodic (or sphere) base mesh.
        if any([t.has_label(hydrostatic) for t in self.equations.residual]):
            u_mass = inner(w, (h_project(u) - u_in)) * dx
        else:
            u_mass = inner(w, (u - u_in)) * dx

        eqn = (
            # momentum equation
            u_mass - beta_cp * div(theta_w * V(w)) * exnerbar * dxp
            # following does nothing but is preserved in the comments
            # to remind us why (because V(w) is purely vertical).
            # + beta_cp*jump(theta_w*V(w), n=n)*exnerbar_avg('+')*dS_vp
            + beta_cp * jump(theta_w * V(w), n=n) * exnerbar_avg('+') * dS_hp +
            beta_cp * dot(theta_w * V(w), n) * exnerbar_avg * ds_tbp -
            beta_cp * div(thetabar_w * w) * exner * dxp
            # trace terms appearing after integrating momentum equation
            + beta_cp * jump(thetabar_w * w, n=n) * l0('+') * (dS_vp + dS_hp) +
            beta_cp * dot(thetabar_w * w, n) * l0 * (ds_tbp + ds_vp)
            # mass continuity equation
            + (phi *
               (rho - rho_in) - beta * inner(grad(phi), u) * rhobar) * dx +
            beta * jump(phi * u, n=n) * rhobar_avg('+') * (dS_v + dS_h)
            # term added because u.n=0 is enforced weakly via the traces
            + beta * phi * dot(u, n) * rhobar_avg * (ds_tb + ds_v)
            # constraint equation to enforce continuity of the velocity
            # through the interior facets and weakly impose the no-slip
            # condition
            + dl('+') * jump(u, n=n) * (dS_vp + dS_hp) + dl * dot(u, n) *
            (ds_tbp + ds_vp))

        # contribution of the sponge term
        if hasattr(self.equations, "mu"):
            eqn += dt * self.equations.mu * inner(w, k) * inner(u, k) * dx

        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Function for the hybridized solutions
        self.urhol0 = Function(M)

        hybridized_prb = LinearVariationalProblem(aeqn, Leqn, self.urhol0)
        hybridized_solver = LinearVariationalSolver(
            hybridized_prb,
            solver_parameters=self.solver_parameters,
            options_prefix='ImplicitSolver')
        self.hybridized_solver = hybridized_solver

        # Project broken u into the HDiv space using facet averaging.
        # Weight function counting the dofs of the HDiv element:
        shapes = {
            "i": Vu.finat_element.space_dimension(),
            "j": np.prod(Vu.shape, dtype=int)
        }
        weight_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                w[i*{j} + j] += 1.0;
        """.format(**shapes)

        self._weight = Function(Vu)
        par_loop(weight_kernel, dx, {"w": (self._weight, INC)})

        # Averaging kernel
        self._average_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                vec_out[i*{j} + j] += vec_in[i*{j} + j]/w[i*{j} + j];
        """.format(**shapes)

        # HDiv-conforming velocity
        self.u_hdiv = Function(Vu)

        # Reconstruction of theta
        theta = TrialFunction(Vtheta)
        gamma = TestFunction(Vtheta)

        self.theta = Function(Vtheta)
        theta_eqn = gamma * (theta - theta_in + dot(k, self.u_hdiv) *
                             dot(k, grad(thetabar)) * beta) * dx

        theta_problem = LinearVariationalProblem(lhs(theta_eqn),
                                                 rhs(theta_eqn), self.theta)
        self.theta_solver = LinearVariationalSolver(
            theta_problem,
            solver_parameters=cg_ilu_parameters,
            options_prefix='thetabacksubstitution')

        # Store boundary conditions for the div-conforming velocity to apply
        # post-solve
        self.bcs = self.equations.bcs['u']
Пример #9
0
    def _setup_solver(self):
        state = self.state      # just cutting down line length a bit
        Dt = state.timestepping.dt
        beta_ = Dt*state.timestepping.alpha
        mu = state.mu
        Vu = state.spaces("HDiv")
        Vb = state.spaces("HDiv_v")
        Vp = state.spaces("DG")

        # Store time-stepping coefficients as UFL Constants
        dt = Constant(Dt)
        beta = Constant(beta_)

        # Split up the rhs vector (symbolically)
        u_in, p_in, b_in = split(state.xrhs)

        # Build the reduced function space for u,p
        M = MixedFunctionSpace((Vu, Vp))
        w, phi = TestFunctions(M)
        u, p = TrialFunctions(M)

        # Get background fields
        bbar = state.fields("bbar")

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        b = -dot(k, u)*dot(k, grad(bbar))*beta + b_in

        # vertical projection
        def V(u):
            return k*inner(u, k)

        eqn = (
            inner(w, (u - u_in))*dx
            - beta*div(w)*p*dx
            - beta*inner(w, k)*b*dx
            + phi*div(u)*dx
        )

        if mu is not None:
            eqn += dt*mu*inner(w, k)*inner(u, k)*dx
        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u p solver
        self.up = Function(M)

        # Boundary conditions (assumes extruded mesh)
        bcs = None if len(self.state.bcs) == 0 else self.state.bcs

        # Solver for u, p
        up_problem = LinearVariationalProblem(aeqn, Leqn, self.up, bcs=bcs)

        # Provide callback for the nullspace of the trace system
        def trace_nullsp(T):
            return VectorSpaceBasis(constant=True)

        appctx = {"trace_nullspace": trace_nullsp}
        self.up_solver = LinearVariationalSolver(up_problem,
                                                 solver_parameters=self.solver_parameters,
                                                 appctx=appctx)

        # Reconstruction of b
        b = TrialFunction(Vb)
        gamma = TestFunction(Vb)

        u, p = self.up.split()
        self.b = Function(Vb)

        b_eqn = gamma*(b - b_in
                       + dot(k, u)*dot(k, grad(bbar))*beta)*dx

        b_problem = LinearVariationalProblem(lhs(b_eqn),
                                             rhs(b_eqn),
                                             self.b)
        self.b_solver = LinearVariationalSolver(b_problem)
Пример #10
0
# Plot source
# rr = np.logspace(-5, np.log(Delta_x*Nx),100)
# ff = np.exp(-rr**2/eps)/eps**0.5
# plt.loglog(rr, ff)
# plt.show()

# We can now define the bilinear and linear forms for the left and right
dx = fd.dx
TdivU = fd.as_vector(
    (Tx_facet * u.dx(0), Ty_facet * u.dx(1), Tz_facet * u.dx(2)))
# F = (u - u_n)/dt*w*v*dx + (fd.dot(TdivU, fd.grad(v)))*dx + f*v*dx
F = w * u * v * dx + dt * (fd.dot(
    TdivU, fd.grad(v))) * dx - (w * u_n + dt * f) * v * dx
a = fd.lhs(F)
L = fd.rhs(F)

# a = inner(u,v)*dx+ dt*(fd.dot(TdivU, fd.grad(v)))*dx
# L = (u_n + dt*f)*v*dx
# m = u * v * w * dx

u = fd.Function(V)
print('Start solver')

t = []
pwf = []
pavg = []
q = []

# t =0
t.append(0.)
Пример #11
0
    def __init__(self, state, V):
        super(EulerPoincareForm, self).__init__(state)

        dt = state.timestepping.dt
        w = TestFunction(V)
        u = TrialFunction(V)
        self.u0 = Function(V)
        ustar = 0.5*(self.u0 + u)
        n = FacetNormal(state.mesh)
        Upwind = 0.5*(sign(dot(self.ubar, n))+1)

        if state.mesh.geometric_dimension() == 3:

            if V.extruded:
                surface_measure = (dS_h + dS_v)
            else:
                surface_measure = dS

            # <w,curl(u) cross ubar + grad( u.ubar)>
            # =<curl(u),ubar cross w> - <div(w), u.ubar>
            # =<u,curl(ubar cross w)> -
            #      <<u_upwind, [[n cross(ubar cross w)cross]]>>

            both = lambda u: 2*avg(u)

            Eqn = (
                inner(w, u-self.u0)*dx
                + dt*inner(ustar, curl(cross(self.ubar, w)))*dx
                - dt*inner(both(Upwind*ustar),
                           both(cross(n, cross(self.ubar, w))))*surface_measure
                - dt*div(w)*inner(ustar, self.ubar)*dx
            )

        # define surface measure and terms involving perp differently
        # for slice (i.e. if V.extruded is True) and shallow water
        # (V.extruded is False)
        else:
            if V.extruded:
                surface_measure = (dS_h + dS_v)
                perp = lambda u: as_vector([-u[1], u[0]])
                perp_u_upwind = Upwind('+')*perp(ustar('+')) + Upwind('-')*perp(ustar('-'))
            else:
                surface_measure = dS
                outward_normals = CellNormal(state.mesh)
                perp = lambda u: cross(outward_normals, u)
                perp_u_upwind = Upwind('+')*cross(outward_normals('+'),ustar('+')) + Upwind('-')*cross(outward_normals('-'),ustar('-'))

            Eqn = (
                (inner(w, u-self.u0)
                 - dt*inner(w, div(perp(ustar))*perp(self.ubar))
                 - dt*div(w)*inner(ustar, self.ubar))*dx
                - dt*inner(jump(inner(w, perp(self.ubar)), n),
                           perp_u_upwind)*surface_measure
                + dt*jump(inner(w,
                                perp(self.ubar))*perp(ustar), n)*surface_measure
            )

        a = lhs(Eqn)
        L = rhs(Eqn)
        self.u1 = Function(V)
        uproblem = LinearVariationalProblem(a, L, self.u1)
        self.usolver = LinearVariationalSolver(uproblem,
                                               options_prefix='EPAdvection')
Пример #12
0
def solver_CG(mesh, el, space, deg, T, dt=0.001, warm_up=False):
    """Solve the scalar wave equation on a unit square/cube using a
    CG FEM formulation with several different element types.

    Parameters
    ----------
    mesh: Firedrake.mesh
        A utility mesh from the Firedrake package
    el: string
        The type of element either "tria" or "quad".
        `tria` in 3d implies tetrahedra and
        `quad` in 3d implies hexahedral elements.
    space: string
        The space of the FEM. Available options are:
            "CG": Continuous Galerkin Finite Elements,
            "KMV": Kong-Mulder-Veldhuzien higher-order mass lumped elements
            "S" (for Serendipity) (NB: quad/hexs only)
            "spectral": spectral elements using GLL quad
                        points (NB: quads/hexs only)
    deg: int
        The spatial polynomial degree.
    T: float
        The simulation duration in simulation seconds.
    dt: float, optional
        Simulation timestep
    warm_up: boolean, optional
        Warm up symbolics by running one timestep and shutting down.

    Returns
    -------
    u_n: Firedrake.Function
        The solution at time `T`


    """

    sd = mesh.geometric_dimension()

    V = _build_space(mesh, el, space, deg)

    quad_rule1, quad_rule2 = _build_quad_rule(el, V, space)

    params = _select_params(space)

    # DEBUG
    # outfile = fd.File(os.getcwd() + "/results/simple_shots.pvd")
    # END DEBUG

    tot_dof = COMM_WORLD.allreduce(V.dof_dset.total_size, op=MPI.SUM)
    # if COMM_WORLD.rank == 0:
    #    print("------------------------------------------")
    #    print("The problem has " + str(tot_dof) + " degrees of freedom.")
    #    print("------------------------------------------")

    nt = int(T / dt)  # number of timesteps

    u = fd.TrialFunction(V)
    v = fd.TestFunction(V)

    u_np1 = fd.Function(V)  # n+1
    u_n = fd.Function(V)  # n
    u_nm1 = fd.Function(V)  # n-1

    # constant speed
    c = Constant(1.5)

    m = (
        (1.0 / (c * c))
        * (u - 2.0 * u_n + u_nm1)
        / Constant(dt * dt)
        * v
        * dx(rule=quad_rule1)
    )  # mass-like matrix

    a = dot(grad(u_n), grad(v)) * dx(rule=quad_rule2)  # stiffness matrix

    # injection of source into mesh
    ricker = Constant(0.0)
    source = Constant([0.5] * sd)
    coords = fd.SpatialCoordinate(mesh)
    F = m + a - delta_expr(source, *coords) * ricker * v * dx(rule=quad_rule2)

    a, r = fd.lhs(F), fd.rhs(F)
    A, R = fd.assemble(a), fd.assemble(r)
    solver = fd.LinearSolver(A, solver_parameters=params, options_prefix="")

    # timestepping loop
    results = []

    t = 0.0
    for step in range(nt):

        with PETSc.Log.Stage("{el}{deg}".format(el=el, deg=deg)):
            ricker.assign(RickerWavelet(t, freq=6))

            R = fd.assemble(r, tensor=R)

            solver.solve(u_np1, R)

            snes = _get_time("SNESSolve")
            ksp = _get_time("KSPSolve")
            pcsetup = _get_time("PCSetUp")
            pcapply = _get_time("PCApply")
            jac = _get_time("SNESJacobianEval")
            residual = _get_time("SNESFunctionEval")
            sparsity = _get_time("CreateSparsity")

            results.append(
                [tot_dof, snes, ksp, pcsetup, pcapply, jac, residual, sparsity]
            )

        if warm_up:
            # Warm up symbolics/disk cache
            solver.solve(u_np1, R)
            sys.exit("Warming up...")

        u_nm1.assign(u_n)
        u_n.assign(u_np1)

        t = step * float(dt)

        # if step % 10 == 0:
        #    outfile.write(u_n)
        #    print("Time is " + str(t), flush=True)

    results = np.asarray(results)
    if mesh.comm.rank == 0:
        with open(
            "data/scalar_wave.{el}.{deg}.{space}.csv".format(
                el=el, deg=deg, space=space
            ),
            "w",
        ) as f:
            np.savetxt(
                f,
                results,
                fmt=["%d"] + ["%e"] * 7,
                delimiter=",",
                header="tot_dof,SNESSolve,KSPSolve,PCSetUp,PCApply,SNESJacobianEval,SNESFunctionEval,CreateSparsity",
                comments="",
            )

    return u_n
uw = lambda u, v: (s(u)('+') * v('+') + s(u)('-') * v('-'))

if mesh.geometric_dimension() == 2:
    perp = lambda u: as_vector([-u[1], u[0]])
    p_uw = lambda u, v: perp(uw(u, v))
else:
    perp = lambda u: cross(CellNormal(mesh), u)
    out_n = CellNormal(mesh)
    p_uw = lambda u, v: (s(u)('+') * cross(out_n('+'), v('+')) + s(u)
                         ('-') * cross(out_n('-'), v('-')))

# Initial solve for vorticity for output
eta = TestFunction(W2)
q_ = TrialFunction(W2)
q_eqn = eta * q_ * Dn * dx + inner(perp(grad(eta)), un) * dx - eta * f * dx
q_p = LinearVariationalProblem(lhs(q_eqn), rhs(q_eqn), qn)
q_solver = LinearVariationalSolver(q_p,
                                   solver_parameters={
                                       "ksp_type": "preonly",
                                       "pc_type": "lu"
                                   })
q_solver.solve()
q0.assign(qn)

# Build advection, forcing forms
M_ext = MixedFunctionSpace((W1, W0, W0))
xp_ext = Function(M_ext)

u_, D_, P_ = TrialFunctions(M_ext)
v, psi, chi = TestFunctions(M_ext)
Пример #14
0
# full weak form
F = F_t + F_a + F_d

# %%
# 4) Solve problem
# -----------------
wave_speed = fd.conditional(fd.lt(np.abs(vnorm), tol), h_E / tol, h_E / vnorm)
# CFL
dt = 0.1 * fd.interpolate(wave_speed, DG1).dat.data.min()
Dt.assign(dt)
outfile = fd.File("plots/adr_dg.pvd")

limiter = fd.VertexBasedLimiter(DG1)  # Kuzmin slope limiter

c_ = fd.Function(DG1, name="c")
problem = fd.LinearVariationalProblem(fd.lhs(F), fd.rhs(F), c_, bcs=bc)
solver = fd.LinearVariationalSolver(problem)

# initialize timestep
t = 0.0
it = 0

p = 0
while t < sim_time:
    # check dt
    dt = np.min([sim_time - t, dt])
    if (t + dt > ptimes[p]):
        dt = ptimes[p] - t
    Dt.assign(dt)

    # move next time step
Пример #15
0
    def setup(self, state):

        space = state.spaces("HDiv")
        super(SawyerEliassenU, self).setup(state, space=space)

        u = state.fields("u")
        b = state.fields("b")
        v = inner(u, as_vector([0., 1., 0.]))

        # spaces
        V0 = FunctionSpace(state.mesh, "CG", 2)
        Vu = u.function_space()

        # project b to V0
        self.b_v0 = Function(V0)
        btri = TrialFunction(V0)
        btes = TestFunction(V0)
        a = inner(btes, btri) * dx
        L = inner(btes, b) * dx
        projectbproblem = LinearVariationalProblem(a, L, self.b_v0)
        self.project_b_solver = LinearVariationalSolver(
            projectbproblem, solver_parameters={'ksp_type': 'cg'})

        # project v to V0
        self.v_v0 = Function(V0)
        vtri = TrialFunction(V0)
        vtes = TestFunction(V0)
        a = inner(vtes, vtri) * dx
        L = inner(vtes, v) * dx
        projectvproblem = LinearVariationalProblem(a, L, self.v_v0)
        self.project_v_solver = LinearVariationalSolver(
            projectvproblem, solver_parameters={'ksp_type': 'cg'})

        # stm/psi is a stream function
        self.stm = Function(V0)
        psi = TrialFunction(V0)
        xsi = TestFunction(V0)

        f = state.parameters.f
        H = state.parameters.H
        L = state.parameters.L
        dbdy = state.parameters.dbdy
        x, y, z = SpatialCoordinate(state.mesh)

        bcs = [DirichletBC(V0, 0., "bottom"), DirichletBC(V0, 0., "top")]

        Mat = as_matrix([[b.dx(2), 0., -f * self.v_v0.dx(2)], [0., 0., 0.],
                         [-self.b_v0.dx(0), 0., f**2 + f * self.v_v0.dx(0)]])

        Equ = (inner(grad(xsi), dot(Mat, grad(psi))) -
               dbdy * inner(grad(xsi), as_vector([-v, 0., f *
                                                  (z - H / 2)]))) * dx

        # fourth-order terms
        if state.parameters.fourthorder:
            eps = Constant(0.0001)
            brennersigma = Constant(10.0)
            n = FacetNormal(state.mesh)
            deltax = Constant(state.parameters.deltax)
            deltaz = Constant(state.parameters.deltaz)

            nn = as_matrix([[sqrt(brennersigma / Constant(deltax)), 0., 0.],
                            [0., 0., 0.],
                            [0., 0.,
                             sqrt(brennersigma / Constant(deltaz))]])

            mu = as_matrix([[1., 0., 0.], [0., 0., 0.], [0., 0., H / L]])

            # anisotropic form
            Equ += eps * (
                div(dot(mu, grad(psi))) * div(dot(mu, grad(xsi))) * dx -
                (avg(dot(dot(grad(grad(psi)), n), n)) * jump(grad(xsi), n=n) +
                 avg(dot(dot(grad(grad(xsi)), n), n)) * jump(grad(psi), n=n) -
                 jump(nn * grad(psi), n=n) * jump(nn * grad(xsi), n=n)) *
                (dS_h + dS_v))

        Au = lhs(Equ)
        Lu = rhs(Equ)
        stmproblem = LinearVariationalProblem(Au, Lu, self.stm, bcs=bcs)
        self.stream_function_solver = LinearVariationalSolver(
            stmproblem, solver_parameters={'ksp_type': 'cg'})

        # solve for sawyer_eliassen u
        self.u = Function(Vu)
        utrial = TrialFunction(Vu)
        w = TestFunction(Vu)
        a = inner(w, utrial) * dx
        L = (w[0] * (-self.stm.dx(2)) + w[2] * (self.stm.dx(0))) * dx
        ugproblem = LinearVariationalProblem(a, L, self.u)
        self.sawyer_eliassen_u_solver = LinearVariationalSolver(
            ugproblem, solver_parameters={'ksp_type': 'cg'})
Пример #16
0
    def _setup_solver(self):
        state = self.state      # just cutting down line length a bit
        dt = state.timestepping.dt
        beta = dt*state.timestepping.alpha
        cp = state.parameters.cp
        mu = state.mu

        # Split up the rhs vector (symbolically)
        u_in, rho_in, theta_in = split(state.xrhs)

        # Build the reduced function space for u,rho
        M = MixedFunctionSpace((state.V[0], state.V[1]))
        w, phi = TestFunctions(M)
        u, rho = TrialFunctions(M)

        n = FacetNormal(state.mesh)

        # Get background fields
        thetabar = state.thetabar
        rhobar = state.rhobar
        pibar = exner(thetabar, rhobar, state)
        pibar_rho = exner_rho(thetabar, rhobar, state)
        pibar_theta = exner_theta(thetabar, rhobar, state)

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        theta = -dot(k,u)*dot(k,grad(thetabar))*beta + theta_in

        # Only include theta' (rather than pi') in the vertical
        # component of the gradient

        # the pi prime term (here, bars are for mean and no bars are
        # for linear perturbations)

        pi = pibar_theta*theta + pibar_rho*rho

        # vertical projection
        def V(u):
            return k*inner(u,k)

        eqn = (
            inner(w, (u - u_in))*dx
            - beta*cp*div(theta*V(w))*pibar*dx
            # following does nothing but is preserved in the comments
            # to remind us why (because V(w) is purely vertical.
            # + beta*cp*jump(theta*V(w),n)*avg(pibar)*dS_v
            - beta*cp*div(thetabar*w)*pi*dx
            + beta*cp*jump(thetabar*w,n)*avg(pi)*dS_v
            + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx
            + beta*jump(phi*u, n)*avg(rhobar)*(dS_v + dS_h)
        )

        if mu is not None:
            eqn += dt*mu*inner(w,k)*inner(u,k)*dx
        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u rho solver
        self.urho = Function(M)

        # Boundary conditions (assumes extruded mesh)
        dim = M.sub(0).ufl_element().value_shape()[0]
        bc = ("0.0",)*dim
        bcs = [DirichletBC(M.sub(0), Expression(bc), "bottom"),
               DirichletBC(M.sub(0), Expression(bc), "top")]

        # Solver for u, rho
        urho_problem = LinearVariationalProblem(
            aeqn, Leqn, self.urho, bcs=bcs)

        self.urho_solver = LinearVariationalSolver(urho_problem,
                                                   solver_parameters=self.params,
                                                   options_prefix='ImplicitSolver')

        # Reconstruction of theta
        theta = TrialFunction(state.V[2])
        gamma = TestFunction(state.V[2])

        u, rho = self.urho.split()
        self.theta = Function(state.V[2])

        theta_eqn = gamma*(theta - theta_in +
                           dot(k,u)*dot(k,grad(thetabar))*beta)*dx

        theta_problem = LinearVariationalProblem(lhs(theta_eqn),
                                                 rhs(theta_eqn),
                                                 self.theta)
        self.theta_solver = LinearVariationalSolver(theta_problem,
                                                    options_prefix='thetabacksubstitution')
Пример #17
0
    def _setup_solver(self):
        from firedrake.assemble import create_assembly_callable
        import numpy as np

        state = self.state
        dt = state.timestepping.dt
        beta = dt*state.timestepping.alpha
        cp = state.parameters.cp
        mu = state.mu
        Vu = state.spaces("HDiv")
        Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element()))
        Vtheta = state.spaces("HDiv_v")
        Vrho = state.spaces("DG")

        h_deg = state.horizontal_degree
        v_deg = state.vertical_degree
        Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg))

        # Split up the rhs vector (symbolically)
        u_in, rho_in, theta_in = split(state.xrhs)

        # Build the function space for "broken" u and rho
        # and add the trace variable
        M = MixedFunctionSpace((Vu_broken, Vrho))
        w, phi = TestFunctions(M)
        u, rho = TrialFunctions(M)
        l0 = TrialFunction(Vtrace)
        dl = TestFunction(Vtrace)

        n = FacetNormal(state.mesh)

        # Get background fields
        thetabar = state.fields("thetabar")
        rhobar = state.fields("rhobar")
        pibar = thermodynamics.pi(state.parameters, rhobar, thetabar)
        pibar_rho = thermodynamics.pi_rho(state.parameters, rhobar, thetabar)
        pibar_theta = thermodynamics.pi_theta(state.parameters, rhobar, thetabar)

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        theta = -dot(k, u)*dot(k, grad(thetabar))*beta + theta_in

        # Only include theta' (rather than pi') in the vertical
        # component of the gradient

        # The pi prime term (here, bars are for mean and no bars are
        # for linear perturbations)
        pi = pibar_theta*theta + pibar_rho*rho

        # Vertical projection
        def V(u):
            return k*inner(u, k)

        # Specify degree for some terms as estimated degree is too large
        dxp = dx(degree=(self.quadrature_degree))
        dS_vp = dS_v(degree=(self.quadrature_degree))
        dS_hp = dS_h(degree=(self.quadrature_degree))
        ds_vp = ds_v(degree=(self.quadrature_degree))
        ds_tbp = ds_t(degree=(self.quadrature_degree)) + ds_b(degree=(self.quadrature_degree))

        # Mass matrix for the trace space
        tM = assemble(dl('+')*l0('+')*(dS_v + dS_h)
                      + dl*l0*ds_v + dl*l0*(ds_t + ds_b))

        Lrhobar = Function(Vtrace)
        Lpibar = Function(Vtrace)
        rhopi_solver = LinearSolver(tM, solver_parameters={'ksp_type': 'cg',
                                                           'pc_type': 'bjacobi',
                                                           'sub_pc_type': 'ilu'},
                                    options_prefix='rhobarpibar_solver')

        rhobar_avg = Function(Vtrace)
        pibar_avg = Function(Vtrace)

        def _traceRHS(f):
            return (dl('+')*avg(f)*(dS_v + dS_h)
                    + dl*f*ds_v + dl*f*(ds_t + ds_b))

        assemble(_traceRHS(rhobar), tensor=Lrhobar)
        assemble(_traceRHS(pibar), tensor=Lpibar)

        # Project averages of coefficients into the trace space
        with timed_region("Gusto:HybridProjectRhobar"):
            rhopi_solver.solve(rhobar_avg, Lrhobar)

        with timed_region("Gusto:HybridProjectPibar"):
            rhopi_solver.solve(pibar_avg, Lpibar)

        # Add effect of density of water upon theta
        if self.moisture is not None:
            water_t = Function(Vtheta).assign(0.0)
            for water in self.moisture:
                water_t += self.state.fields(water)
            theta_w = theta / (1 + water_t)
            thetabar_w = thetabar / (1 + water_t)
        else:
            theta_w = theta
            thetabar_w = thetabar

        # "broken" u and rho system
        Aeqn = (inner(w, (state.h_project(u) - u_in))*dx
                - beta*cp*div(theta_w*V(w))*pibar*dxp
                # following does nothing but is preserved in the comments
                # to remind us why (because V(w) is purely vertical).
                # + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_vp
                + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_hp
                + beta*cp*dot(theta_w*V(w), n)*pibar_avg*ds_tbp
                - beta*cp*div(thetabar_w*w)*pi*dxp
                + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx
                + beta*dot(phi*u, n)*rhobar_avg('+')*(dS_v + dS_h))

        if mu is not None:
            Aeqn += dt*mu*inner(w, k)*inner(u, k)*dx

        # Form the mixed operators using Slate
        # (A   K)(X) = (X_r)
        # (K.T 0)(l)   (0  )
        # where X = ("broken" u, rho)
        A = Tensor(lhs(Aeqn))
        X_r = Tensor(rhs(Aeqn))

        # Off-diagonal block matrices containing the contributions
        # of the Lagrange multipliers (surface terms in the momentum equation)
        K = Tensor(beta*cp*dot(thetabar_w*w, n)*l0('+')*(dS_vp + dS_hp)
                   + beta*cp*dot(thetabar_w*w, n)*l0*ds_vp
                   + beta*cp*dot(thetabar_w*w, n)*l0*ds_tbp)

        # X = A.inv * (X_r - K * l),
        # 0 = K.T * X = -(K.T * A.inv * K) * l + K.T * A.inv * X_r,
        # so (K.T * A.inv * K) * l = K.T * A.inv * X_r
        # is the reduced equation for the Lagrange multipliers.
        # Right-hand side expression: (Forward substitution)
        Rexp = K.T * A.inv * X_r
        self.R = Function(Vtrace)

        # We need to rebuild R everytime data changes
        self._assemble_Rexp = create_assembly_callable(Rexp, tensor=self.R)

        # Schur complement operator:
        Smatexp = K.T * A.inv * K
        with timed_region("Gusto:HybridAssembleTraceOp"):
            S = assemble(Smatexp)
            S.force_evaluation()

        # Set up the Linear solver for the system of Lagrange multipliers
        self.lSolver = LinearSolver(S, solver_parameters=self.solver_parameters,
                                    options_prefix='lambda_solve')

        # Result function for the multiplier solution
        self.lambdar = Function(Vtrace)

        # Place to put result of u rho reconstruction
        self.urho = Function(M)

        # Reconstruction of broken u and rho
        u_, rho_ = self.urho.split()

        # Split operators for two-stage reconstruction
        _A = A.blocks
        _K = K.blocks
        _Xr = X_r.blocks

        A00 = _A[0, 0]
        A01 = _A[0, 1]
        A10 = _A[1, 0]
        A11 = _A[1, 1]
        K0 = _K[0, 0]
        Ru = _Xr[0]
        Rrho = _Xr[1]
        lambda_vec = AssembledVector(self.lambdar)

        # rho reconstruction
        Srho = A11 - A10 * A00.inv * A01
        rho_expr = Srho.solve(Rrho - A10 * A00.inv * (Ru - K0 * lambda_vec),
                              decomposition="PartialPivLU")
        self._assemble_rho = create_assembly_callable(rho_expr, tensor=rho_)

        # "broken" u reconstruction
        rho_vec = AssembledVector(rho_)
        u_expr = A00.solve(Ru - A01 * rho_vec - K0 * lambda_vec,
                           decomposition="PartialPivLU")
        self._assemble_u = create_assembly_callable(u_expr, tensor=u_)

        # Project broken u into the HDiv space using facet averaging.
        # Weight function counting the dofs of the HDiv element:
        shapes = (Vu.finat_element.space_dimension(), np.prod(Vu.shape))

        weight_kernel = """
        for (int i=0; i<%d; ++i) {
        for (int j=0; j<%d; ++j) {
        w[i][j] += 1.0;
        }}""" % shapes

        self._weight = Function(Vu)
        par_loop(weight_kernel, dx, {"w": (self._weight, INC)})

        # Averaging kernel
        self._average_kernel = """
        for (int i=0; i<%d; ++i) {
        for (int j=0; j<%d; ++j) {
        vec_out[i][j] += vec_in[i][j]/w[i][j];
        }}""" % shapes

        # HDiv-conforming velocity
        self.u_hdiv = Function(Vu)

        # Reconstruction of theta
        theta = TrialFunction(Vtheta)
        gamma = TestFunction(Vtheta)

        self.theta = Function(Vtheta)
        theta_eqn = gamma*(theta - theta_in +
                           dot(k, self.u_hdiv)*dot(k, grad(thetabar))*beta)*dx

        theta_problem = LinearVariationalProblem(lhs(theta_eqn), rhs(theta_eqn), self.theta)
        self.theta_solver = LinearVariationalSolver(theta_problem,
                                                    solver_parameters={'ksp_type': 'cg',
                                                                       'pc_type': 'bjacobi',
                                                                       'pc_sub_type': 'ilu'},
                                                    options_prefix='thetabacksubstitution')

        self.bcs = [DirichletBC(Vu, 0.0, "bottom"),
                    DirichletBC(Vu, 0.0, "top")]