def run_L2tracking_optimization(write_output=False): """ Test template for fsz.LevelsetFunctional.""" # tool for developing new tests, allows storing shape iterates if write_output: out = fd.File("domain.pvd") def cb(*args): out.write(Q.mesh_m.coordinates) cb() else: cb = None # setup problem mesh = fd.UnitSquareMesh(30, 30) Q = fs.FeControlSpace(mesh) inner = fs.ElasticityInnerProduct(Q) q = fs.ControlVector(Q, inner) # setup PDE constraint mesh_m = Q.mesh_m e = PoissonSolver(mesh_m) # create PDEconstrained objective functional J_ = L2trackingObjective(e, Q, cb=cb) J = fs.ReducedObjective(J_, e) # ROL parameters params_dict = { 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 10 } }, 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } }, }, 'Status Test': { 'Gradient Tolerance': 1e-4, 'Step Tolerance': 1e-5, 'Iteration Limit': 15 } } # assemble and solve ROL optimization problem params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough state = solver.getAlgorithmState() assert (state.gnorm < 1e-4)
def test_equality_constraint(pytestconfig): mesh = fs.DiskMesh(0.05, radius=2.) Q = fs.FeControlSpace(mesh) inner = fs.ElasticityInnerProduct(Q, direct_solve=True) mesh_m = Q.mesh_m (x, y) = fd.SpatialCoordinate(mesh_m) q = fs.ControlVector(Q, inner) if pytestconfig.getoption("verbose"): out = fd.File("domain.pvd") def cb(*args): out.write(Q.mesh_m.coordinates) else: cb = None f = (pow(2 * x, 2)) + pow(y - 0.1, 2) - 1.2 J = fsz.LevelsetFunctional(f, Q, cb=cb) vol = fsz.LevelsetFunctional(fd.Constant(1.0), Q) e = fs.EqualityConstraint([vol]) emul = ROL.StdVector(1) params_dict = { 'Step': { 'Type': 'Augmented Lagrangian', 'Augmented Lagrangian': { 'Subproblem Step Type': 'Line Search', 'Penalty Parameter Growth Factor': 2., 'Initial Penalty Parameter': 1., 'Subproblem Iteration Limit': 20, }, 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } }, }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 5 } }, 'Status Test': { 'Gradient Tolerance': 1e-4, 'Step Tolerance': 1e-10, 'Iteration Limit': 10 } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q, econ=e, emul=emul) solver = ROL.OptimizationSolver(problem, params) solver.solve() state = solver.getAlgorithmState() assert (state.gnorm < 1e-4) assert (state.cnorm < 1e-6)
def test_TimeTracking(): """ Main test.""" # setup problem mesh = fd.UnitSquareMesh(20, 20) Q = fs.FeControlSpace(mesh) inner = fs.LaplaceInnerProduct(Q, fixed_bids=[1, 2, 3, 4]) q = fs.ControlVector(Q, inner) # create PDEconstrained objective functional J = TimeTracking(Q) # ROL parameters params_dict = { 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 25 } }, 'Step': { 'Type': 'Trust Region' }, 'Status Test': { 'Gradient Tolerance': 1e-3, 'Step Tolerance': 1e-8, 'Iteration Limit': 20 } } # assemble and solve ROL optimization problem params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough state = solver.getAlgorithmState() assert (state.gnorm < 1e-3)
choices=["elasticity", "laplace"]) parser.add_argument("--alpha", type=float, default=None) parser.add_argument("--clscale", type=float, default=0.1) parser.add_argument("--maxiter", type=int, default=50) parser.add_argument("--weighted", default=False, action="store_true") parser.add_argument("--rstar", type=float, default=0.79) args = parser.parse_args() mesh = fd.Mesh("annulus.msh") R = 1.0 r = 0.5 print("Harmonic map exists for r^*/R^* = %.2f" % ((0.5 * (R / r + r / R))**-1)) Rs = 1.0 rs = args.rstar Q = fs.FeControlSpace(mesh) d = distance_function(Q.get_space_for_inner()[0].mesh(), boundary_ids=[1, 2]) if args.weighted: mu_base = 0.01 / (0.01 + d) else: mu_base = fd.Constant(1.) # mu_base = fd.Constant(1.0) if args.base_inner == "elasticity": inner = fs.ElasticityInnerProduct(Q, mu=mu_base, direct_solve=True) elif args.base_inner == "laplace": inner = fs.LaplaceInnerProduct(Q, mu=mu_base, direct_solve=True) else: raise NotImplementedError if args.alpha is not None:
def test_box_constraint(pytestconfig): n = 5 mesh = fd.UnitSquareMesh(n, n) T = mesh.coordinates.copy(deepcopy=True) (x, y) = fd.SpatialCoordinate(mesh) T.interpolate(T + fd.Constant((1, 0)) * x * y) mesh = fd.Mesh(T) Q = fs.FeControlSpace(mesh) inner = fs.LaplaceInnerProduct(Q, fixed_bids=[1]) mesh_m = Q.mesh_m q = fs.ControlVector(Q, inner) if pytestconfig.getoption("verbose"): out = fd.File("domain.pvd") def cb(): out.write(mesh_m.coordinates) else: def cb(): pass lower_bound = Q.T.copy(deepcopy=True) lower_bound.interpolate(fd.Constant((-0.0, -0.0))) upper_bound = Q.T.copy(deepcopy=True) upper_bound.interpolate(fd.Constant((+1.3, +0.9))) J = fsz.MoYoBoxConstraint(1, [2], Q, lower_bound=lower_bound, upper_bound=upper_bound, cb=cb, quadrature_degree=100) g = q.clone() J.gradient(g, q, None) taylor_result = J.checkGradient(q, g, 9, 1) for i in range(len(taylor_result) - 1): if taylor_result[i][3] > 1e-7: assert taylor_result[i + 1][3] <= taylor_result[i][3] * 0.11 params_dict = { 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } } }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 2 } }, 'Status Test': { 'Gradient Tolerance': 1e-10, 'Step Tolerance': 1e-10, 'Iteration Limit': 150 } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() Tvec = Q.T.vector() nodes = fd.DirichletBC(Q.V_r, fd.Constant((0.0, 0.0)), [2]).nodes assert np.all(Tvec[nodes, 0] <= 1.3 + 1e-4) assert np.all(Tvec[nodes, 1] <= 0.9 + 1e-4)
def test_objective_plus_box_constraint(pytestconfig): n = 10 mesh = fd.UnitSquareMesh(n, n) T = mesh.coordinates.copy(deepcopy=True) (x, y) = fd.SpatialCoordinate(mesh) T.interpolate(T + fd.Constant((0, 0))) mesh = fd.Mesh(T) Q = fs.FeControlSpace(mesh) inner = fs.LaplaceInnerProduct(Q) mesh_m = Q.mesh_m q = fs.ControlVector(Q, inner) if pytestconfig.getoption("verbose"): out = fd.File("domain.pvd") def cb(): out.write(mesh_m.coordinates) else: def cb(): pass lower_bound = Q.T.copy(deepcopy=True) lower_bound.interpolate(fd.Constant((-0.2, -0.2))) upper_bound = Q.T.copy(deepcopy=True) upper_bound.interpolate(fd.Constant((+1.2, +1.2))) # levelset test case (x, y) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x - 0.5, 2)) + pow(y - 0.5, 2) - 4. J1 = fsz.LevelsetFunctional(f, Q, cb=cb, quadrature_degree=10) J2 = fsz.MoYoBoxConstraint(10., [1, 2, 3, 4], Q, lower_bound=lower_bound, upper_bound=upper_bound, cb=cb, quadrature_degree=10) J3 = fsz.MoYoSpectralConstraint(100, fd.Constant(0.6), Q, cb=cb, quadrature_degree=100) J = 0.1 * J1 + J2 + J3 g = q.clone() J.gradient(g, q, None) taylor_result = J.checkGradient(q, g, 9, 1) for i in range(len(taylor_result) - 1): if taylor_result[i][3] > 1e-6 and taylor_result[i][3] < 1e-3: assert taylor_result[i + 1][3] <= taylor_result[i][3] * 0.15 params_dict = { 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } } }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 2 } }, 'Status Test': { 'Gradient Tolerance': 1e-10, 'Step Tolerance': 1e-10, 'Iteration Limit': 10 } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() Tvec = Q.T.vector() nodes = fd.DirichletBC(Q.V_r, fd.Constant((0.0, 0.0)), [2]).nodes assert np.all(Tvec[nodes, 0] <= 1.2 + 1e-1) assert np.all(Tvec[nodes, 1] <= 1.2 + 1e-1)
def test_spectral_constraint(pytestconfig): n = 5 mesh = fd.UnitSquareMesh(n, n) T = fd.Function(fd.VectorFunctionSpace( mesh, "CG", 1)).interpolate(fd.SpatialCoordinate(mesh) - fd.Constant((0.5, 0.5))) mesh = fd.Mesh(T) Q = fs.FeControlSpace(mesh) inner = fs.LaplaceInnerProduct(Q) mesh_m = Q.mesh_m q = fs.ControlVector(Q, inner) if pytestconfig.getoption("verbose"): out = fd.File("domain.pvd") def cb(): out.write(mesh_m.coordinates) else: def cb(): pass J = fsz.MoYoSpectralConstraint(0.5, fd.Constant(0.1), Q, cb=cb) q.fun += Q.T g = q.clone() J.update(q, None, -1) J.gradient(g, q, None) cb() taylor_result = J.checkGradient(q, g, 7, 1) for i in range(len(taylor_result) - 1): assert taylor_result[i + 1][3] <= taylor_result[i][3] * 0.11 params_dict = { 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 2 } }, 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } } }, 'Status Test': { 'Gradient Tolerance': 1e-10, 'Step Tolerance': 1e-10, 'Iteration Limit': 150 } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() Tvec = Q.T.vector()[:, :] for i in range(Tvec.shape[0]): assert abs(Tvec[i, 0]) < 0.55 + 1e-4 assert abs(Tvec[i, 1]) < 0.55 + 1e-4 assert np.any(np.abs(Tvec) > 0.55 - 1e-4)
def test_periodic(dim, inner_t, use_extension, pytestconfig): verbose = pytestconfig.getoption("verbose") """ Test template for PeriodicControlSpace.""" if dim == 2: mesh = fd.PeriodicUnitSquareMesh(30, 30) elif dim == 3: mesh = fd.PeriodicUnitCubeMesh(20, 20, 20) else: raise NotImplementedError Q = fs.FeControlSpace(mesh) inner = inner_t(Q) # levelset test case V = fd.FunctionSpace(Q.mesh_m, "DG", 0) sigma = fd.Function(V) if dim == 2: x, y = fd.SpatialCoordinate(Q.mesh_m) g = fd.sin(y * np.pi) # truncate at bdry f = fd.cos(2 * np.pi * x) * g perturbation = 0.05 * fd.sin(x * np.pi) * g**2 sigma.interpolate(g * fd.cos(2 * np.pi * x * (1 + perturbation))) elif dim == 3: x, y, z = fd.SpatialCoordinate(Q.mesh_m) g = fd.sin(y * np.pi) * fd.sin(z * np.pi) # truncate at bdry f = fd.cos(2 * np.pi * x) * g perturbation = 0.05 * fd.sin(x * np.pi) * g**2 sigma.interpolate(g * fd.cos(2 * np.pi * x * (1 + perturbation))) else: raise NotImplementedError class LevelsetFct(fs.ShapeObjective): def __init__(self, sigma, f, *args, **kwargs): super().__init__(*args, **kwargs) self.sigma = sigma # initial self.f = f # target Vdet = fd.FunctionSpace(Q.mesh_r, "DG", 0) self.detDT = fd.Function(Vdet) def value_form(self): # volume integral self.detDT.interpolate(fd.det(fd.grad(self.Q.T))) if min(self.detDT.vector()) > 0.05: integrand = (self.sigma - self.f)**2 else: integrand = np.nan * (self.sigma - self.f)**2 return integrand * fd.dx(metadata={"quadrature_degree": 1}) # if running with -v or --verbose, then export the shapes if verbose: out = fd.File("sigma.pvd") def cb(*args): out.write(sigma) else: cb = None J = LevelsetFct(sigma, f, Q, cb=cb) if use_extension == "w_ext": ext = fs.ElasticityExtension(Q.V_r) if use_extension == "w_ext_fixed_dim": ext = fs.ElasticityExtension(Q.V_r, fixed_dims=[0]) else: ext = None q = fs.ControlVector(Q, inner, boundary_extension=ext) """ move mesh a bit to check that we are not doing the taylor test in T=id """ g = q.clone() J.gradient(g, q, None) q.plus(g) J.update(q, None, 1) """ Start taylor test """ J.gradient(g, q, None) res = J.checkGradient(q, g, 5, 1) errors = [l[-1] for l in res] assert (errors[-1] < 0.11 * errors[-2]) q.scale(0) """ End taylor test """ # ROL parameters grad_tol = 1e-4 params_dict = { 'Step': { 'Type': 'Trust Region' }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 25 } }, 'Status Test': { 'Gradient Tolerance': grad_tol, 'Step Tolerance': 1e-10, 'Iteration Limit': 40 } } # assemble and solve ROL optimization problem params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough state = solver.getAlgorithmState() assert (state.gnorm < grad_tol)