def evaluate( src_cfg, tr_norms, te_norms, analytical_fim, pi_derivatives, sqrt_nr_descs, do_plot=False, verbose=0): outfile = os.path.join( CACHE_PATH, "%s_%s_afim_%s_pi_%s_sqrt_nr_descs_%s.dat" % ( src_cfg, "%s", analytical_fim, pi_derivatives, sqrt_nr_descs)) dataset = Dataset(CFG[src_cfg]['dataset_name'], **CFG[src_cfg]['dataset_params']) (tr_kernel, tr_labels, te_kernel, te_labels) = load_kernels( dataset, tr_norms=tr_norms, te_norms=te_norms, analytical_fim=analytical_fim, pi_derivatives=pi_derivatives, sqrt_nr_descs=sqrt_nr_descs, outfile=outfile, do_plot=do_plot, verbose=verbose) eval = Evaluation(CFG[src_cfg]['eval_name'], **CFG[src_cfg]['eval_params']) eval.fit(tr_kernel, tr_labels) scores = eval.score(te_kernel, te_labels) if verbose > 0: print 'Train normalizations:', ', '.join(map(str, tr_norms)) print 'Test normalizations:', ', '.join(map(str, te_norms)) if CFG[src_cfg]['metric'] == 'average_precision': print_scores(scores) if CFG[src_cfg]['metric'] == 'average_precision': print "%.2f" % np.mean(scores) elif CFG[src_cfg]['metric'] == 'accuracy': print "%.2f" % scores
def evaluate(src_cfg, tr_kernel, tr_labels, te_kernel, te_labels): eval = Evaluation(CFG[src_cfg]['eval_name'], **CFG[src_cfg]['eval_params']) eval.fit(tr_kernel, tr_labels) scores = eval.score(te_kernel, te_labels) if CFG[src_cfg]['metric'] == 'average_precision': print_scores(scores) if CFG[src_cfg]['metric'] == 'average_precision': print "%.2f" % np.mean(scores) elif CFG[src_cfg]['metric'] == 'accuracy': print "%.2f" % scores
def evaluate(src_cfg, tr_norms, te_norms, analytical_fim, pi_derivatives, sqrt_nr_descs, do_plot=False, verbose=0): outfile = os.path.join( CACHE_PATH, "%s_%s_afim_%s_pi_%s_sqrt_nr_descs_%s.dat" % (src_cfg, "%s", analytical_fim, pi_derivatives, sqrt_nr_descs)) dataset = Dataset(CFG[src_cfg]['dataset_name'], **CFG[src_cfg]['dataset_params']) (tr_kernel, tr_labels, te_kernel, te_labels) = load_kernels(dataset, tr_norms=tr_norms, te_norms=te_norms, analytical_fim=analytical_fim, pi_derivatives=pi_derivatives, sqrt_nr_descs=sqrt_nr_descs, outfile=outfile, do_plot=do_plot, verbose=verbose) eval = Evaluation(CFG[src_cfg]['eval_name'], **CFG[src_cfg]['eval_params']) eval.fit(tr_kernel, tr_labels) scores = eval.score(te_kernel, te_labels) if verbose > 0: print 'Train normalizations:', ', '.join(map(str, tr_norms)) print 'Test normalizations:', ', '.join(map(str, te_norms)) if CFG[src_cfg]['metric'] == 'average_precision': print_scores(scores) if CFG[src_cfg]['metric'] == 'average_precision': print "%.2f" % np.mean(scores) elif CFG[src_cfg]['metric'] == 'accuracy': print "%.2f" % scores