Пример #1
0
def cuda_curve_fit_sync(*args, **kwargs):
    x = fitter_torch.curve_fit(*args, **kwargs)
    torch.cuda.synchronize()
    return x
Пример #2
0
    for i in range(nfits):
        p, q = scipy.optimize.curve_fit(data.testfunc_lin_np, data_lin.x,
                                        data_lin.y)
    t1_stop = time.time()
    comp_time_lin.append(t1_stop - t1_start)
    print(p)
    print(q)
    print(t1_stop - t1_start)

    #pytorch CPU
    t1_start = time.time()
    x = torch.from_numpy(data_lin.x)
    y = torch.from_numpy(data_lin.y)
    for i in range(nfits):
        p, q, j = fitter_torch.curve_fit(
            data.testfunc_lin_torch, x, y,
            [torch.ones(2, requires_grad=True, dtype=torch.float64)])
    t1_stop = time.time()
    comp_time_lin.append(t1_stop - t1_start)
    print(p)
    print(q)
    print(j)
    print(t1_stop - t1_start)

    #pytorch GPU
    t1_start = time.time()
    if torch.cuda.is_available():
        x = torch.from_numpy(data_lin.x).cuda()
        y = torch.from_numpy(data_lin.y).cuda()
        t1_start = time.time()
        for i in range(nfits):
Пример #3
0
def benchmark_epx(pointlist):

    params = []
    covs = []
    params_true = []
    optimizers = []
    npoints = []
    weights_index = []

    for idx, el in enumerate(pointlist):
        comp_time_exp = []
        #weights = np.random.rand(nfits,el)*2
        #weights = np.random.poisson(lam=1., size=(nfits, el))
        weights = bootstrap_weights(nfits, el) + eps
        weights[0] = np.ones(el)
        exp_fitter = bfgsfitter(data.testfunc_exp)
        data_exp.setxy(el, sigma0)
        # bfgsfitter
        t1_start = time.time()

        for i in range(nfits):
            p, q = exp_fitter.curve_fit(data_exp.x, data_exp.y)

        t1_stop = time.time()
        comp_time_exp.append(t1_stop - t1_start)
        print(p.numpy())
        print(q.numpy())
        weights_index.append(0)
        params.append(p.numpy())
        covs.append(np.diag(q.numpy()))
        params_true.append(data_exp.params)
        optimizers.append("Tensorflow_BFGS")
        npoints.append(el)

        # second fit after initializiation
        t1_start = time.time()

        for i in range(nfits):
            p, q = exp_fitter.curve_fit(data_exp.x, data_exp.y)

        t1_stop = time.time()
        comp_time_exp.append(t1_stop - t1_start)

        # scipy
        t1_start = time.time()

        for i in range(nfits):
            p, q = scipy.optimize.curve_fit(data.testfunc_exp_np,
                                            data_exp.x,
                                            data_exp.y,
                                            sigma=sigma0 / weights[i])
            params.append(p)
            covs.append(np.diag(q))
            params_true.append(data_exp.params)
            optimizers.append("Scipy_LM")
            npoints.append(el)
            weights_index.append(i)
            chisq.append(
                np.sum(((data.testfunc_exp_np(data_exp.x, *p) - data_exp.y) /
                        sigma0)**2))
            chisq_transformed.append(
                np.sum(weights[i] *
                       ((data.testfunc_exp_np(data_exp.x, *p) - data_exp.y) /
                        sigma0)**2))
        t1_stop = time.time()
        comp_time_exp.append(t1_stop - t1_start)
        print(p)
        print(q)

        # pytorch CPU
        t1_start = time.time()
        x = torch.from_numpy(data_exp.x)
        y = torch.from_numpy(data_exp.y)
        for i in range(nfits):
            p, q = fitter_torch.curve_fit(
                data.testfunc_exp_torch,
                x,
                y, [torch.ones(2, requires_grad=True, dtype=torch.float64)],
                weights=torch.from_numpy(weights[i] / sigma0**2))
            params.append(p[0].detach().numpy())
            covs.append(np.diag(q.numpy()))
            params_true.append(data_exp.params)
            optimizers.append("PyTorch_LBFGS")
            npoints.append(el)
            weights_index.append(i)
            chisq.append(
                np.sum((
                    (data.testfunc_lin_np(data_exp.x, *p[0].detach().numpy()) -
                     data_exp.y) / sigma0)**2))
            chisq_transformed.append(
                np.sum(weights[i] * (
                    (data.testfunc_exp_np(data_exp.x, *p[0].detach().numpy()) -
                     data_exp.y) / sigma0)**2))

        t1_stop = time.time()
        comp_time_exp.append(t1_stop - t1_start)
        print(p[0].detach().numpy())
        print(q.numpy())
        print(t1_stop - t1_start)

        explist.append(comp_time_exp)

    name = "exp"
    df = create_benchmark_df(name, optimizers, params_true, params, covs,
                             npoints, weights_index)

    return explist, df
Пример #4
0
def benchmark_linear(pointList):

    params = []
    covs = []
    params_true = []
    optimizers = []
    npoints = []
    weights_index = []

    for idx, el in enumerate(pointList):
        comp_time_lin = []
        lin_fitter = bfgsfitter(data.testfunc_lin)
        data_lin.setxy(el, sigma0)
        lin_parameter_list_org.append(data_lin.params)
        #weights = np.random.rand(nfits,el)*2
        weights = bootstrap_weights(nfits, el) + eps
        weights[0] = np.ones(el)
        p0 = np.random.normal(data_lin.params, lin_initial_guess_sigma,
                              [nfits, 2])
        # bfgsfitter
        t1_start = time.time()
        for i in range(nfits):
            p, q = lin_fitter.curve_fit(
                data_lin.x,
                data_lin.y,
                weights=tf.constant(weights[i] / sigma0**2),
                initial_parameters=tf.cast(p0[i], tf.float32))
            weights_index.append(i)
            params.append(p.numpy())
            covs.append(np.diag(q.numpy()))
            params_true.append(data_lin.params)
            optimizers.append("Tensorflow_BFGS")
            npoints.append(el)
            chisq.append(
                np.sum(((data.testfunc_lin_np(data_lin.x, *p.numpy()) -
                         data_lin.y) / sigma0)**2))
            chisq_transformed.append(
                np.sum(weights[i] *
                       ((data.testfunc_lin_np(data_lin.x, *p.numpy()) -
                         data_lin.y) / sigma0)**2))
        t1_stop = time.time()
        comp_time_lin.append(t1_stop - t1_start)
        print(p)
        print(q)
        print(t1_stop - t1_start)

        # second fit after initializiation
        t1_start = time.time()
        for i in range(nfits):
            p, q = lin_fitter.curve_fit(
                data_lin.x,
                data_lin.y,
                weights=tf.constant(weights[i] / sigma0**2),
                initial_parameters=tf.cast(p0[i], tf.float32))
        t1_stop = time.time()
        comp_time_lin.append(t1_stop - t1_start)
        print(t1_stop - t1_start)

        # scipy
        t1_start = time.time()
        for i in range(nfits):
            p, q = scipy.optimize.curve_fit(data.testfunc_lin_np,
                                            data_lin.x,
                                            data_lin.y,
                                            sigma=sigma0 / np.sqrt(weights[i]),
                                            p0=p0[i])
            params.append(p)
            covs.append(np.diag(q))
            params_true.append(data_lin.params)
            optimizers.append("Scipy_LM")
            npoints.append(el)
            weights_index.append(i)
            chisq.append(
                np.sum(((data.testfunc_lin_np(data_lin.x, *p) - data_lin.y) /
                        sigma0)**2))
            chisq_transformed.append(
                np.sum(weights[i] *
                       ((data.testfunc_lin_np(data_lin.x, *p) - data_lin.y) /
                        sigma0)**2))
        t1_stop = time.time()
        comp_time_lin.append(t1_stop - t1_start)
        print(p)
        print(q)
        print(t1_stop - t1_start)

        # pytorch CPU
        t1_start = time.time()
        x = torch.from_numpy(data_lin.x)
        y = torch.from_numpy(data_lin.y)
        for i in range(nfits):
            p, q = fitter_torch.curve_fit(
                data.testfunc_lin_torch,
                x,
                y, [torch.ones(2, requires_grad=True, dtype=torch.float64)],
                weights=torch.from_numpy(weights[i] / sigma0**2))

            params.append(p[0].detach().numpy())
            covs.append(np.diag(q.numpy()))
            params_true.append(data_lin.params)
            optimizers.append("PyTorch_LBFGS")
            npoints.append(el)
            weights_index.append(i)
            chisq.append(
                np.sum((
                    (data.testfunc_lin_np(data_lin.x, *p[0].detach().numpy()) -
                     data_lin.y) / sigma0)**2))
            chisq_transformed.append(
                np.sum(weights[i] * (
                    (data.testfunc_lin_np(data_lin.x, *p[0].detach().numpy()) -
                     data_lin.y) / sigma0)**2))
        t1_stop = time.time()
        comp_time_lin.append(t1_stop - t1_start)
        print(p)
        print(q)
        print(t1_stop - t1_start)
        # pytorch GPU
        """
        t1_start = time.time()
        if torch.cuda.is_available():
            x = torch.from_numpy(data_lin.x).cuda()
            y = torch.from_numpy(data_lin.y).cuda()
            t1_start = time.time()
            for i in range(nfits):
                p, q, j = fitter_torch.curve_fit(data.testfunc_lin_torch, x, y, [
                    torch.ones(2, requires_grad=True, dtype=torch.float64, device="cuda:0")])
            t1_stop = time.time()
            comp_time_lin.append(t1_stop - t1_start)
        """
        linlist.append(comp_time_lin)
    name = "lin"
    df = create_benchmark_df(name, optimizers, params_true, params, covs,
                             npoints, weights_index)
    return linlist, df
Пример #5
0
def benchmark_bootstrap(npoints,
                        nfits,
                        nbootstrap,
                        testfunc,
                        sigma_data,
                        sigma_initial_guess,
                        generate_params,
                        nparams,
                        xmin=-1,
                        xmax=1,
                        weights=None,
                        testfunc_tf=None,
                        testfunc_torch=None):
    frames = []
    params = []
    errors = []
    params_true = []
    fit_idx = []
    fitter_name = []
    bs_mean = []
    bs_median = []
    bs_std = []
    bs_rmsexp = []
    bs_rmsexp_filtered = []
    bs_mean_filtered = []
    bs_median_filtered = []
    bs_std_filtered = []
    bs_number_accepted = []
    bs_number_valid = []
    chisq = []
    number_points = []
    t = []

    if weights is None:
        weights = bootstrap_weights(nbootstrap, npoints)
    if testfunc_tf is None:
        testfunc_tf = testfunc
    if testfunc_torch is None:
        testfunc_torch = testfunc
    x = np.linspace(xmin, xmax, npoints).astype(np.float32)
    fitterTF = bfgsfitter(testfunc_tf)
    for ifit in range(nfits):
        print("Fit ", ifit)
        params_true_0 = generate_params()
        y = np.random.normal(testfunc(x, *params_true_0),
                             sigma_data).astype(np.float32)
        p0 = np.random.normal(params_true_0, sigma_initial_guess,
                              [nbootstrap, nparams]).astype(np.float32)

        if "Tensorflow_BFGS" in fitters:
            p, q = fitterTF.curve_fit(x,
                                      y,
                                      initial_parameters=p0[0],
                                      weights=1 / sigma_data**2)
            #print(p.numpy()); print(q.numpy())
            pn = p.numpy()
            params.append(pn)
            errors.append(np.sqrt(np.diag(q.numpy())))
            chisq.append(
                np.sum((testfunc(x, *pn) - y)**2) / sigma_data**2 /
                (npoints - nparams))
            params_true.append(params_true_0)
            number_points.append(npoints)
            fit_idx.append(ifit)
            fitter_name.append("Tensorflow_BFGS")
            t0 = time.time()
            df0, mean_filtered, median_filtered, std_filtered, _ = fitterTF.curve_fit_BS(
                x,
                y,
                weights=weights,
                init_params=p0,
                sigma0=sigma_data,
                nbootstrap=nbootstrap)
            t1 = time.time()
            frames.append(df0)
            df0["fit_idx"] = ifit
            df0["time"] = (t1 - t0) / nbootstrap
            t.append(t1 - t0)
            mean = []
            median = []
            std = []
            rmsexp = []
            rmsexp_filtered = []
            df0_filtered = df0.query("is_accepted")
            for a, b in enumerate(params_true_0):
                df0[str.format("params_true_{}", a)] = b
                mean.append(df0[str.format("params_{}", a)].mean())
                median.append(df0[str.format("params_{}", a)].median())
                std.append(df0[str.format("params_{}", a)].std())
                rmsexp.append(df0[str.format("errors_{}", a)].mean())
                rmsexp_filtered.append(df0_filtered[str.format("errors_{}",
                                                               a)].mean())
            mean = np.array(mean)
            median = np.array(median)
            std = np.array(std)
            rmsexp = np.array(rmsexp)
            bs_mean.append(mean)
            bs_median.append(median)
            bs_std.append(std)
            bs_rmsexp.append(rmsexp)
            bs_mean_filtered.append(mean_filtered)
            bs_median_filtered.append(median_filtered)
            bs_std_filtered.append(std_filtered)
            bs_rmsexp_filtered.append(np.array(rmsexp_filtered))
            bs_number_accepted.append(df0["is_accepted"].sum())
            bs_number_valid.append(df0["is_valid"].sum())

        if "Scipy_LM" in fitters:
            try:
                p, q = scipy.optimize.curve_fit(testfunc,
                                                x,
                                                y,
                                                sigma=sigma_data *
                                                np.ones_like(y),
                                                p0=p0[0])
            except (RuntimeError):
                p = np.full(nparams, np.nan)
                q = np.full([nparams, nparams], np.nan)
            #print(p); print(q)
            params.append(p)
            errors.append(np.sqrt(np.diag(q)))
            chisq.append(
                np.sum((testfunc(x, *p) - y)**2) / sigma_data**2 /
                (npoints - nparams))
            params_true.append(params_true_0)
            number_points.append(npoints)
            fit_idx.append(ifit)
            fitter_name.append("Scipy_LM")
            t0 = time.time()
            df0, mean_filtered, median_filtered, std_filtered, _ = bootstrap_scipy(
                x,
                y,
                testfunc,
                init_params=p0,
                weights=weights,
                sigma0=sigma_data,
                nbootstrap=nbootstrap,
                bootstrap_options={'chisq_cut': 4})
            t1 = time.time()
            frames.append(df0)
            df0["fit_idx"] = ifit
            df0["time"] = (t1 - t0) / nbootstrap
            t.append(t1 - t0)
            mean = []
            median = []
            std = []
            rmsexp = []
            rmsexp_filtered = []
            df0_filtered = df0.query("is_accepted")
            for a, b in enumerate(params_true_0):
                df0[str.format("params_true_{}", a)] = b
                mean.append(df0[str.format("params_{}", a)].mean())
                median.append(df0[str.format("params_{}", a)].median())
                std.append(df0[str.format("params_{}", a)].std())
                rmsexp.append(df0[str.format("errors_{}", a)].mean())
                rmsexp_filtered.append(df0_filtered[str.format("errors_{}",
                                                               a)].mean())
            mean = np.array(mean)
            median = np.array(median)
            std = np.array(std)
            rmsexp = np.array(rmsexp)
            bs_mean.append(mean)
            bs_median.append(median)
            bs_std.append(std)
            bs_rmsexp.append(rmsexp)
            bs_mean_filtered.append(mean_filtered)
            bs_median_filtered.append(median_filtered)
            bs_std_filtered.append(std_filtered)
            bs_rmsexp_filtered.append(np.array(rmsexp_filtered))
            bs_number_accepted.append(df0["is_accepted"].sum())
            bs_number_valid.append(df0["is_valid"].sum())

        if "Pytorch_LBFGS" in fitters:
            p, q, optim_state, fit_status = fitter_torch.curve_fit(
                testfunc_torch,
                torch.from_numpy(x),
                torch.from_numpy(y),
                [torch.tensor(i, requires_grad=True) for i in p0[0]],
                sigma=sigma_data,
                full_output=True)
            #print(p[0].detach().numpy()); print(q.numpy())
            if fit_status["is_valid"]:
                pn = np.hstack([j.detach().cpu().numpy() for j in p])
                params.append(pn)
                errors.append(np.sqrt(np.diag(q.cpu().numpy())))
                chisq.append(fit_status['fval'] / (npoints - nparams))
            else:
                params.append(np.full(nparams, np.nan))
                errors.append(np.full(nparams, np.nan))
                chisq.append(np.nan)
            params_true.append(params_true_0)
            number_points.append(npoints)
            fit_idx.append(ifit)
            fitter_name.append("Pytorch_LBFGS")
            t0 = time.time()
            df0, mean_filtered, median_filtered, std_filtered, _ = fitter_torch.curve_fit_BS(
                x,
                y,
                testfunc_torch,
                init_params=p0,
                weights=weights,
                sigma0=sigma_data,
                nbootstrap=nbootstrap,
                bootstrap_options={'chisq_cut': 4})
            t1 = time.time()
            frames.append(df0)
            df0["fit_idx"] = ifit
            df0["time"] = (t1 - t0) / nbootstrap
            t.append(t1 - t0)
            mean = []
            median = []
            std = []
            rmsexp = []
            rmsexp_filtered = []
            df0_filtered = df0.query("is_accepted")
            for a, b in enumerate(params_true_0):
                df0[str.format("params_true_{}", a)] = b
                mean.append(df0[str.format("params_{}", a)].mean())
                median.append(df0[str.format("params_{}", a)].median())
                std.append(df0[str.format("params_{}", a)].std())
                rmsexp.append(df0[str.format("errors_{}", a)].mean())
                rmsexp_filtered.append(df0_filtered[str.format("errors_{}",
                                                               a)].mean())
            mean = np.array(mean)
            median = np.array(median)
            std = np.array(std)
            rmsexp = np.array(rmsexp)
            bs_mean.append(mean)
            bs_median.append(median)
            bs_std.append(std)
            bs_rmsexp.append(rmsexp)
            bs_mean_filtered.append(mean_filtered)
            bs_median_filtered.append(median_filtered)
            bs_std_filtered.append(std_filtered)
            bs_rmsexp_filtered.append(np.array(rmsexp_filtered))
            bs_number_accepted.append(df0["is_accepted"].sum())
            bs_number_valid.append(df0["is_valid"].sum())

        if torch.cuda.is_available() and "Pytorch_LBFGS_CUDA" in fitters:
            p, q, optim_state, fit_status = fitter_torch.curve_fit(
                testfunc_torch,
                torch.from_numpy(x).cuda(),
                torch.from_numpy(y).cuda(), [
                    torch.tensor(i, requires_grad=True, device="cuda:0")
                    for i in p0[0]
                ],
                sigma=sigma_data,
                full_output=True)
            #print(p[0].detach().numpy()); print(q.numpy())
            if fit_status["is_valid"]:
                pn = np.hstack([j.detach().cpu().numpy() for j in p])
                params.append(pn)
                errors.append(np.sqrt(np.diag(q.cpu().numpy())))
                chisq.append(fit_status['fval'] / (npoints - nparams))
            else:
                params.append(np.full(nparams, np.nan))
                errors.append(np.full(nparams, np.nan))
                chisq.append(np.nan)
            params_true.append(params_true_0)
            number_points.append(npoints)
            fit_idx.append(ifit)
            fitter_name.append("Pytorch_LBFGS_CUDA")
            t0 = time.time()
            df0, mean_filtered, median_filtered, std_filtered, _ = fitter_torch.curve_fit_BS(
                x,
                y,
                testfunc_torch,
                init_params=p0,
                weights=weights,
                sigma0=sigma_data,
                nbootstrap=nbootstrap,
                device="cuda:0",
                fitter_name="Pytorch_LBFGS_CUDA",
                bootstrap_options={'chisq_cut': 4})
            torch.cuda.synchronize()
            t1 = time.time()
            frames.append(df0)
            df0["fit_idx"] = ifit
            df0["time"] = (t1 - t0) / nbootstrap
            t.append(t1 - t0)
            mean = []
            median = []
            std = []
            rmsexp = []
            rmsexp_filtered = []
            df0_filtered = df0.query("is_accepted")
            for a, b in enumerate(params_true_0):
                df0[str.format("params_true_{}", a)] = b
                mean.append(df0[str.format("params_{}", a)].mean())
                median.append(df0[str.format("params_{}", a)].median())
                std.append(df0[str.format("params_{}", a)].std())
                rmsexp.append(df0[str.format("errors_{}", a)].mean())
                rmsexp_filtered.append(df0_filtered[str.format("errors_{}",
                                                               a)].mean())
            mean = np.array(mean)
            median = np.array(median)
            std = np.array(std)
            rmsexp = np.array(rmsexp)
            bs_mean.append(mean)
            bs_median.append(median)
            bs_std.append(std)
            bs_rmsexp.append(rmsexp)
            bs_mean_filtered.append(mean_filtered)
            bs_median_filtered.append(median_filtered)
            bs_std_filtered.append(std_filtered)
            bs_rmsexp_filtered.append(np.array(rmsexp_filtered))
            bs_number_accepted.append(df0["is_accepted"].sum())
            bs_number_valid.append(df0["is_valid"].sum())

        if "iminuit" in fitters:
            p, q, status = fitter_minuit.curve_fit(testfunc,
                                                   x,
                                                   y,
                                                   weights=1 / sigma_data**2,
                                                   p0=p0[0],
                                                   full_output=True)
            #print(p[0].detach().numpy()); print(q.numpy())
            if status.is_valid:
                params.append(p)
                errors.append(np.sqrt(np.diag(q)))
                chisq.append(status.fval / (npoints - nparams))
            else:
                params.append(np.full(nparams, np.nan))
                errors.append(np.full(nparams, np.nan))
                chisq.append(np.nan)
            params_true.append(params_true_0)
            number_points.append(npoints)
            fit_idx.append(ifit)
            fitter_name.append("Minuit")
            t0 = time.time()
            df0, mean_filtered, median_filtered, std_filtered, _ = fitter_minuit.curve_fit_BS(
                x,
                y,
                testfunc,
                init_params=p0,
                weights=weights,
                sigma0=sigma_data,
                nbootstrap=nbootstrap,
                bootstrap_options={'chisq_cut': 4})
            t1 = time.time()
            frames.append(df0)
            df0["fit_idx"] = ifit
            df0["time"] = (t1 - t0) / nbootstrap
            t.append(t1 - t0)
            mean = []
            median = []
            std = []
            rmsexp = []
            rmsexp_filtered = []
            df0_filtered = df0.query("is_accepted")
            for a, b in enumerate(params_true_0):
                df0[str.format("params_true_{}", a)] = b
                mean.append(df0[str.format("params_{}", a)].mean())
                median.append(df0[str.format("params_{}", a)].median())
                std.append(df0[str.format("params_{}", a)].std())
                rmsexp.append(df0[str.format("errors_{}", a)].mean())
                rmsexp_filtered.append(df0_filtered[str.format("errors_{}",
                                                               a)].mean())
            mean = np.array(mean)
            median = np.array(median)
            std = np.array(std)
            rmsexp = np.array(rmsexp)
            bs_mean.append(mean)
            bs_median.append(median)
            bs_std.append(std)
            bs_rmsexp.append(rmsexp)
            bs_mean_filtered.append(mean_filtered)
            bs_median_filtered.append(median_filtered)
            bs_std_filtered.append(std_filtered)
            bs_rmsexp_filtered.append(np.array(rmsexp_filtered))
            bs_number_accepted.append(df0["is_accepted"].sum())
            bs_number_valid.append(df0["is_valid"].sum())

    bs_mean = np.stack(bs_mean)
    bs_median = np.stack(bs_median)
    bs_std = np.stack(bs_std)
    bs_rmsexp = np.stack(bs_rmsexp)
    bs_mean_filtered = np.stack(bs_mean_filtered)
    bs_median_filtered = np.stack(bs_median_filtered)
    bs_std_filtered = np.stack(bs_std_filtered)
    bs_rmsexp_filtered = np.stack(bs_rmsexp_filtered)
    params = np.stack(params)
    errors = np.stack(errors)
    params_true = list(zip(*params_true))
    d = {
        "fitter_name": fitter_name,
        "fit_idx": fit_idx,
        "number_points": number_points,
        "time": t,
        "chisq": chisq,
        "nbootstrap": nbootstrap,
        'bs_number_valid': bs_number_valid,
        'bs_number_accepted': bs_number_accepted
    }
    d.update({
        str.format("params_{}", i): params[:, i]
        for i in range(params.shape[1])
    })
    d.update({
        str.format("errors_{}", i): errors[:, i]
        for i in range(errors.shape[1])
    })
    d.update({
        str.format("bs_mean_{}", i): bs_mean[:, i]
        for i in range(bs_mean.shape[1])
    })
    d.update({
        str.format("bs_median_{}", i): bs_median[:, i]
        for i in range(bs_median.shape[1])
    })
    d.update({
        str.format("bs_std_{}", i): bs_std[:, i]
        for i in range(bs_std.shape[1])
    })
    d.update({
        str.format("bs_rmsexp_{}", i): bs_rmsexp[:, i]
        for i in range(bs_rmsexp.shape[1])
    })
    d.update({
        str.format("bs_mean_filtered_{}", i): bs_mean_filtered[:, i]
        for i in range(bs_mean.shape[1])
    })
    d.update({
        str.format("bs_median_filtered_{}", i): bs_median_filtered[:, i]
        for i in range(bs_median.shape[1])
    })
    d.update({
        str.format("bs_std_filtered_{}", i): bs_std_filtered[:, i]
        for i in range(bs_std.shape[1])
    })
    d.update({
        str.format("bs_rmsexp_filtered_{}", i): bs_rmsexp_filtered[:, i]
        for i in range(bs_rmsexp_filtered.shape[1])
    })
    d.update({
        str.format("params_true_{}", idx): el
        for idx, el in enumerate(params_true)
    })

    df1 = pd.DataFrame(d)
    df2 = pd.concat(frames)

    return df1, df2