Пример #1
0
    def dTFsensitivity(self):
        """Compute the transfer function sensitivity measure and matrix
		Returns
			- M: tf sensitivity measure
			- MX: tf sensitivity matrix
		"""
        return _w_norm_prod(dSS(self.AZ, self._M1, self.CZ, self._M2),
                            dSS(self.AZ, self.BZ, self._N1, self._N2), self.dZ)
Пример #2
0
    def to_dSS(self, form="ctrl"):
        """
		Transform the transfer function into a state-space
		Parameters:
			- form: controllable canonical form ('ctrl') or observable canonical form ('obs')

		"""
        # TODO: code it without scipy

        from fixif.LTI import dSS
        if form == 'ctrl':
            A = mat(diagflat(ones((1, self.order - 1)), 1))
            A[self.order - 1, :] = fliplr(-self.den[0, 1:])
            B = mat(r_[zeros((self.order - 1, 1)), atleast_2d(1)])
            C = mat(
                fliplr(self.num[0, 1:]) -
                fliplr(self.den[0, 1:]) * self.num[0, 0])
            D = mat(atleast_2d(self.num[0, 0]))
        elif form == 'obs':
            # TODO: to it manually!!
            A, B, C, D = tf2ss(array(self.num)[0, :], array(self.den)[0, :])
        else:
            raise ValueError(
                'dTF.to_dSS: the form "%s" is invalid (must be "ctrl" or "obs")'
                % form)

        return dSS(A, B, C, D)
Пример #3
0
Файл: SIF.py Проект: fixif/fixif
	def _build_AZtoDZ(self):
		# compute AZ, BZ, CZ and DZ matrices
		AZ = self.K * self._invJ * self.M + self.P
		BZ = self.K * self._invJ * self.N + self.Q
		CZ = self.L * self._invJ * self.M + self.R
		DZ = self.L * self._invJ * self.N + self.S
		# and store them in a dSS object
		self._dSS = dSS(AZ, BZ, CZ, DZ)
Пример #4
0
def test_construction():
	"""
	Test the constructor
	"""
	# test non-consistency size
	with pytest.raises(ValueError):
		dSS([[1, 2], [3, 4], [5, 6]], 1, 2, 3)
	with pytest.raises(ValueError):
		dSS([[1, 2], [3, 4]], 1, 2, 3)
	with pytest.raises(ValueError):
		dSS([[1, 2], [3, 4]], [[1], [2]], 2, 3)
	with pytest.raises(ValueError):
		dSS([[1, 2], [3, 4]], [[1], [2]], [[1, 2], [1, 2]], 3)
Пример #5
0
    def __init__(self,
                 num=None,
                 den=None,
                 A=None,
                 B=None,
                 C=None,
                 D=None,
                 tf=None,
                 ss=None,
                 stable=None,
                 name='noname'):
        """
		Create a Filter from numerator and denominator OR from A,B,C,D matrices
		Parameters
		----------
		num, den: numerator and denominator of the transfer function
		A,B,C,D: State-Space matrices
		tf: a dTF object
		ss: a dSS object
		"""
        self._dSS = None
        self._dTF = None
        self._name = name

        if A is not None and B is not None and C is not None and D is not None:
            self._dSS = dSS(A, B, C, D)
        elif num is not None and den is not None:
            self._dTF = dTF(num, den)
        elif tf is not None:
            self._dTF = tf
        elif ss is not None:
            self._dSS = ss
        else:
            raise ValueError(
                'Filter: the values given to the Filter constructor are not correct'
            )

        # is the filter stable?
        if stable is None:
            # TODO: compute the eigenvalues to know if it is stable or not
            self._stable = False
        else:
            self._stable = stable
Пример #6
0
Файл: SIF.py Проект: fixif/fixif
	def Hepsilon(self):
		"""Hepsilon is the state-space system from the roundoff errors to the output"""
		if self._Hepsilon is None:
			self._Hepsilon = dSS(self.AZ, self._M1, self.CZ, self._M2)
		return self._Hepsilon
Пример #7
0
Файл: SIF.py Проект: fixif/fixif
	def Hu(self):
		"""Hu system is the state-space system from the inputs to the intern variables t,x,y"""
		if self._Hu is None:
			self._Hu = dSS(self.AZ, self.BZ, self._N1, self._N2)
		return self._Hu
Пример #8
0
def WCPG_txy(S):
    N1 = np.bmat(np.r_[S.invJ * S.M, S.AZ, S.CZ])
    N2 = np.bmat(np.r_[S.invJ * S.N, S.BZ, S.DZ])
    SS = dSS(S.AZ, S.BZ, N1, N2)
    return SS.WCPG()
Пример #9
0
def makerhoDFII(filt,
                gamma=None,
                Delta=None,
                transposed=True,
                scaling=None,
                equiv_dSS=False):
    """
	Factory function to make a rho Direct Form II Realisation

		- gamma and Delta are free parameters of the rho Direct Form II (Delta can be computed if None, see 'scaling' option, Gamma is set to 1 if None)
	Options:
		- transposed: (boolean, True as default) transpose (or not) the realization: rhoDirect Form II transposed (True) or rho Direct Form II (False)
		- scaling: tell how the Delta parameters should be chosen, WHEN the Deltas are not given (equal to None)
			- None: Deltas are all equal to 1 (no scaling)
			- 'l2': a l2-scaling is applied to deduce the Deltas
			- 'l2-relaxed': a l2-relaxed scaling is applied to deduce the Deltas
		- equiv_dSS: if True returns the equivalent State-Space (instead of the Direct Form II itself)
	Returns
	- a dictionary of necessary infos to build the Realization
	"""

    # see LI04b and Hila11b for reference

    n = filt.order
    if gamma is None:
        gamma = ones((1, n))
    gamma = mat(gamma)

    # =====================================
    #  Step 1: build Valapha_bar, Vbeta_bar
    # by considering Delta_k = 1 for all k
    # =====================================

    # Va and Vb
    Va = transpose(filt.dTF.den)
    Vb = transpose(filt.dTF.num)

    # Build Tbar
    Tbar = mat(zeros((n + 1, n + 1)))
    Tbar[n, n] = 1
    for i in range(n - 1, -1, -1):
        Tbar[i, i:n + 1] = poly(gamma[0, i:n].A1)

    # Valpha_bar, Vbeta_bar
    Valpha_bar = transpose(inv(Tbar)) * Va
    Vbeta_bar = transpose(inv(Tbar)) * Vb

    # Equivalent state space (Abar, Bbar, Cbar, Dbar)
    A0 = diagflat(mat(ones((n - 1, 1))), 1)
    A0[:, 0] = -Valpha_bar[1:, 0]
    Abar = diagflat(gamma) + A0
    Bbar = Vbeta_bar[1:, 0] - Vbeta_bar[0, 0] * Valpha_bar[1:, 0]
    Cbar = mat(zeros((1, n)))
    Cbar[0, 0] = 1
    Dbar = Vbeta_bar[0, 0]

    # ============================================
    # Step 2: Compute Delta according to scaling
    # (when Delta is not given)
    # ============================================

    if Delta is None:
        # We need to compute the Deltas, according to the option 'scaling'

        if scaling is None:
            Delta = ones((1, n))

        else:
            Wc = dSS(Abar, Bbar, Cbar, Dbar).Wc
            Delta = zeros((1, n))
            if scaling == 'l2':
                # compute the Deltas that perform a l2-scaling (see Li04b)
                Delta[0, 0] = sqrt(Wc[0, 0])
                for i in range(1, n):
                    Delta[0, i] = sqrt(Wc[i, i] / Wc[i - 1, i - 1])

            elif scaling == 'l2-relaxed':
                # compute the Deltas that perform a l2-scaling (see Hila09b)
                Delta[0, 0] = floor2(sqrt(Wc[0, 0]))
                for i in range(1, n):
                    Delta[0, i] = floor2(sqrt(Wc[i, i] / Wc[i - 1, i - 1]))

            else:
                raise ValueError(
                    "rhoDFII: the `scaling` parameter should be None, 'l2' or 'l2-relaxed'"
                )

    # ============================================
    # Step 3: Compute the coefficients (Valpha, Vbeta
    # ============================================

    # compute Valpha and Vbeta
    #  compute Tbar
    Tbar = mat(zeros((n + 1, n + 1)))
    Tbar[n, n] = 1

    for i in range(n - 1, -1, -1):
        Tbar[i, i:n + 1] = poly(gamma[0, i:n].A1) / prod(Delta[0, i:n])

    Ka = prod(Delta[0, :])

    Valpha = transpose(inv(Ka * Tbar)) * Va
    Vbeta = transpose(inv(Ka * Tbar)) * Vb

    # ============================
    # Step 4 : build SIF
    # ============================

    if equiv_dSS:

        # Equivalent state space (A, B, C, D)
        A0 = diagflat(mat(ones((n - 1, 1))), 1)
        A0[:, 0] = -Valpha[1:, 0]
        Arho = diagflat(gamma) + A0 * diagflat(Delta)
        Brho = Vbeta[1:, 0] - Vbeta[0, 0] * Valpha[1:, 0]
        Crho = mat(zeros((1, n)))
        Crho[0, 0] = Delta[0, 0]
        Drho = mat(Vbeta[0, 0])

        J = eye(0)
        K = zeros((n, 0))
        L = zeros((1, 0))
        M = zeros((0, n))
        N = zeros((0, 1))
        P = Arho
        Q = Brho
        R = Crho
        S = Drho

    # TODO: build dJtodS matrix, according to gammaExact and DeltaExact options

    else:
        if array_equal(Delta, ones((1, n))):
            # specific SIF when the Delta are all equal to 1 (the temporary variables are not necessary, since t_i = x_i * Delta_i)
            J = mat(1)
            K = -Valpha[1:n + 1, 0]
            L = mat(1)
            M = c_[atleast_2d(1), zeros((1, n - 1))]
            N = mat(Vbeta[0, 0])
            P = mat(diagflat(Delta)) + mat(diagflat(ones((1, n - 1)), 1))
            Q = Vbeta[1:n + 1, 0]
            R = zeros((1, n))
            S = mat(0)

        else:
            J = eye(n)
            K = mat(diagflat(ones((1, n - 1)), 1))
            K[:, 0] = -Valpha[1:n + 1, 0]
            L = c_[atleast_2d(1), zeros((1, n - 1))]
            M = mat(diagflat(Delta))
            N = r_[atleast_2d(Vbeta[0, 0]), zeros((n - 1, 1))]
            P = mat(diagflat(gamma))
            Q = Vbeta[1:n + 1, 0]
            R = zeros((1, n))
            S = mat(0)

    if not transposed:
        # matrices J, K, L, M, N, P, Q, R and S were for transposed form
        K, M = M.transpose(), K.transpose()
        P = P.transpose()
        R, Q = Q.transpose(), R.transpose()
        L, N = N.transpose(), L.transpose()
        J = J.transpose()
        S = S.transpose()  # no need to really do this, since S is a scalar

    # TODO: store gamma !!
    return {"JtoS": (J, K, L, M, N, P, Q, R, S)}
Пример #10
0
	def to_dSS(self):
		from fixif.LTI import dSS
		return dSS(mpf_to_numpy(self._A), mpf_to_numpy(self._B), mpf_to_numpy(self._C), mpf_to_numpy(self._D))