Пример #1
0
def ccsn_limits(sn_type):

    base = "analyses/ccsn/stasik_2017/calculate_sensitivity/"
    path = base + sn_type + "/real_unblind/"

    savepath = limit_output_path(path)

    print("Loading limits from", savepath)
    with open(savepath, "r") as f:
        results = Pickle.load(f)
    return results
Пример #2
0
def limit_sens(mh_name, pdf_type):

    base = f'analyses/ccsn/stasik2017/calculate_sensitivity/{mh_name}/{pdf_type}/'
    sub_base = base.split(os.sep)

    for i, _ in enumerate(sub_base):
        p = sub_base[0]
        for d in range(1, i):
            p += f'{os.sep}{sub_base[d]}'
        p = limits_dir + p
        if not os.path.isdir(p):
            logging.debug(f'making directory {p}')
            os.mkdir(p)

    return limit_output_path(base)
Пример #3
0
def limit_sens(base):

    # base = f'{raw_output_dir}/calculate_sensitivity/{mh_name}/{pdf_type}/'
    sub_base = base.split(os.sep)

    for i, _ in enumerate(sub_base):
        p = sub_base[0]
        for d in range(1, i):
            p += f"{os.sep}{sub_base[d]}"
        p = limits_dir + p
        if not os.path.isdir(p):
            logging.debug(f"making directory {p}")
            os.mkdir(p)

    return limit_output_path(base)
Пример #4
0
        def __init__(self, unblind_dict, seed=None, scan_2d=False, **kwargs):

            self.unblind_dict = unblind_dict
            unblind_dict["unblind_bool"] = True
            unblind_dict["mock_unblind_bool"] = mock_unblind
            unblind_dict["inj_dict"] = {}

            if np.logical_and(not mock_unblind, not disable_warning):
                self.check_unblind()

            if mock_unblind is False:
                self.mock_unblind = False
            else:
                self.mock_unblind = True

            ParentMiminisationHandler.__init__(self, unblind_dict)

            try:
                if self.mock_unblind:
                    self.limit_path = limit_output_path(
                        self.unblind_dict["name"] + "mock_unblind/")
                    self.unblind_res_path = unblinding_output_path(
                        self.unblind_dict["name"] + "mock_unblind/")

                else:
                    self.limit_path = limit_output_path(
                        self.unblind_dict["name"] + "real_unblind/")
                    self.unblind_res_path = unblinding_output_path(
                        self.unblind_dict["name"] + "real_unblind/")

            except KeyError:
                self.limit_path = np.nan
                self.unblind_res_path = np.nan

            if self.name != " /":
                if self.mock_unblind:
                    self.name += "mock_unblind/"
                else:
                    self.name += "real_unblind/"

            self.plot_dir = plot_output_dir(self.name)

            try:
                os.makedirs(os.path.dirname(self.unblind_res_path))
            except OSError:
                pass

            # Avoid redoing unblinding

            if not reunblind:

                try:
                    logger.info(
                        "Not re-unblinding, loading results from {0}".format(
                            self.unblind_res_path))

                    with open(self.unblind_res_path, "rb") as f:
                        self.res_dict = pickle.load(f)

                except FileNotFoundError:
                    logger.warning(
                        "No pickle files containing unblinding results found. "
                        "Re-unblinding now.")

            # Otherwise unblind

            if not hasattr(self, "res_dict"):
                logger.info("Unblinding catalogue")

                # Minimise likelihood and produce likelihood scans
                self.res_dict = self.simulate_and_run(0, seed)

            logger.info(self.res_dict)

            # Quantify the TS value significance
            self.ts = np.array([self.res_dict["TS"]])[0]
            self.ts_type = unblind_dict.get('ts_type', 'Standard')
            self.sigma = np.nan

            logger.info("Test Statistic of: {0}".format(self.ts))

            ub_res_dict = {
                "Parameters": self.res_dict['Parameters'],
                "TS": self.res_dict['TS'],
                "Flag": self.res_dict['Flag']
            }

            logger.info("Saving unblinding results to {0}".format(
                self.unblind_res_path))

            with open(self.unblind_res_path, "wb") as f:
                pickle.dump(ub_res_dict, f)

            try:
                path = self.unblind_dict["background_ts"]
                self.pickle_dir = name_pickle_output_dir(path)
                self.output_file = self.plot_dir + "TS.pdf"
                self.compare_to_background_TS()
            except KeyError:
                logger.warning("No Background TS Distribution specified. "
                               "Cannot assess significance of TS value.")

            if full_plots:

                self.calculate_upper_limits()
                if isinstance(self, FlareMinimisationHandler):
                    self.neutrino_lightcurve()
                else:
                    self.scan_likelihood(scan_2d=scan_2d)
Пример #5
0
        def __init__(self, unblind_dict, seed=None, scan_2d=False, **kwargs):

            self.unblind_dict = unblind_dict
            unblind_dict["unblind_bool"] = True
            unblind_dict["mock_unblind_bool"] = mock_unblind
            unblind_dict["inj_dict"] = {}

            # specifies whether all available background distributions should be merged
            # to improve statistics (see loop over subdirs in self.compare_to_background_TS()
            self.use_merged_background_ts_distributions = kwargs.get(
                "merge_background_ts_distr", True)
            self.background_median = np.nan

            # gives the medians for the separate background distributions
            # this is used when background TS distributions are not merged
            self.background_median_gamma = dict()

            if np.logical_and(not mock_unblind, not disable_warning):
                self.check_unblind()

            if mock_unblind is False:
                self.mock_unblind = False
            else:
                self.mock_unblind = True

            ParentMiminisationHandler.__init__(self, unblind_dict)

            try:
                if self.mock_unblind:
                    self.limit_path = limit_output_path(
                        self.unblind_dict["name"] + "mock_unblind/")
                    self.unblind_res_path = unblinding_output_path(
                        self.unblind_dict["name"] + "mock_unblind/")

                else:
                    self.limit_path = limit_output_path(
                        self.unblind_dict["name"] + "real_unblind/")
                    self.unblind_res_path = unblinding_output_path(
                        self.unblind_dict["name"] + "real_unblind/")

            except KeyError:
                self.limit_path = np.nan
                self.unblind_res_path = np.nan

            if self.name != " /":
                if self.mock_unblind:
                    self.name += "mock_unblind/"
                else:
                    self.name += "real_unblind/"

            self.plot_dir = plot_output_dir(self.name)

            try:
                os.makedirs(os.path.dirname(self.unblind_res_path))
            except OSError:
                pass

            # Avoid redoing unblinding

            if not reunblind:

                try:
                    logger.info(
                        "Not re-unblinding, loading results from {0}".format(
                            self.unblind_res_path))

                    with open(self.unblind_res_path, "rb") as f:
                        self.res_dict = pickle.load(f)

                except FileNotFoundError:
                    logger.warning(
                        "No pickle files containing unblinding results found. "
                        "Re-unblinding now.")

            # Otherwise unblind

            if not hasattr(self, "res_dict"):
                logger.info("Unblinding catalogue")

                # Minimise likelihood and produce likelihood scans
                self.res_dict = self.simulate_and_run(0, seed)

            logger.info(self.res_dict)

            # Quantify the TS value significance
            self.bkg_ts_array = None
            self.ts = np.array([self.res_dict["TS"]])[0]
            self.sigma = np.nan
            # the raw pre-trial p-value will be calculated using only the TS distributions without fitting them
            # This is only valid if you ran enough background trials!
            self.raw_pre_trial_pvalue = np.nan
            self.ts_type = get_ts_fit_type(unblind_dict)

            logger.info("Test Statistic of: {0}".format(self.ts))

            ub_res_dict = {
                "Parameters": self.res_dict["Parameters"],
                "TS": self.res_dict["TS"],
                "Flag": self.res_dict["Flag"],
            }

            logger.info("Saving unblinding results to {0}".format(
                self.unblind_res_path))

            with open(self.unblind_res_path, "wb") as f:
                pickle.dump(ub_res_dict, f)

            try:
                path = self.unblind_dict["background_ts"]
                self.pickle_dir = name_pickle_output_dir(path)
                self.output_file = self.plot_dir + "TS.pdf"
                self.compare_to_background_TS()
            except KeyError as e:
                logger.warning(f"No Background TS Distribution specified. "
                               f"Cannot assess significance of TS value: {e}!")

            if full_plots:

                self.calculate_upper_limits()
                if isinstance(self, FlareMinimisationHandler):
                    self.neutrino_lightcurve()
                else:
                    self.scan_likelihood(scan_2d=scan_2d)