def create_optimizer(model, learning_rate, weight_decay, layers=None):
    """Instantiates Adam multi-optimizer."""

    if layers is None:
        assert (
            type(learning_rate) == type(weight_decay) == float
        ), 'Specify float values for moded learning rate and weight decay!'
        optimizer_def = optim.Adam(learning_rate=learning_rate,
                                   weight_decay=weight_decay)
        optimizer = optimizer_def.create(model)

    else:
        assert (
            len(learning_rate) == len(weight_decay) == len(layers)
        ), 'Number of specified learning rates, weight decays, and layers must be equal!'
        optimizers = []
        for lr, wd, layer in zip(learning_rate, weight_decay, layers):
            if lr > 0:
                opt = optim.Adam(learning_rate=lr, weight_decay=wd)
                filter_fn = functools.partial(path_inclusion_filter_fn,
                                              layer=layer)
                traversal = optim.ModelParamTraversal(filter_fn)
                traversal_opt = (traversal, opt)
                optimizers.append(traversal_opt)
        optimizer_def = optim.MultiOptimizer(*optimizers)
        optimizer = optimizer_def.create(model)

    return optimizer
Пример #2
0
def create_optimizer(model, learning_rate=1e-4):
  """Create optimizer used for training model.

  MultiOpt is used to apply Adam Optimizer with weight decay to all parameters
  except layer_norm and bias and Adam Optimizer without weight decay for
  layer_norm and bias params.

  Args:
    model: JAX model to add optimizer to
    learning_rate: base learning rate used for initializing optimizer

  Returns:
    optimizer: model with Adam Optimizer to be used for training
  """
  weight_decay_def = optim.Adam(
      learning_rate=learning_rate, eps=1e-6, weight_decay=0.01)
  no_decay_def = optim.Adam(
      learning_rate=learning_rate, eps=1e-6, weight_decay=0.0)

  def filter_weight_decay(key, _):
    return 'layer_norm' not in key and 'bias' not in key
  def filter_other(key, _):
    return 'layer_norm' in key or 'bias' in key

  weight_decay_traversal = optim.ModelParamTraversal(filter_weight_decay)
  no_decay_traversal = optim.ModelParamTraversal(filter_other)
  optimizer_def = optim.MultiOptimizer(
      (weight_decay_traversal, weight_decay_def),
      (no_decay_traversal, no_decay_def))

  optimizer = optimizer_def.create(model)
  optimizer = optimizer.replicate()
  del model
  return optimizer
Пример #3
0
def create_optimizer(config, params):
    if config.optimizer == "adam":
        optimizer_cls = optim.Adam
    elif config.optimizer == "lamb":
        optimizer_cls = optim.LAMB
    else:
        raise ValueError("Unsupported value for optimizer: {config.optimizer}")
    common_kwargs = dict(
        learning_rate=config.learning_rate,
        beta1=config.adam_beta1,
        beta2=config.adam_beta2,
        eps=config.adam_epsilon,
    )
    optimizer_decay_def = optimizer_cls(weight_decay=config.weight_decay,
                                        **common_kwargs)
    optimizer_no_decay_def = optimizer_cls(weight_decay=0.0, **common_kwargs)

    def exclude_from_decay(path, _):
        return "bias" in path or "layer_norm" in path or "layernorm" in path

    decay = optim.ModelParamTraversal(
        lambda *args: not exclude_from_decay(*args))
    no_decay = optim.ModelParamTraversal(exclude_from_decay)
    optimizer_def = optim.MultiOptimizer((decay, optimizer_decay_def),
                                         (no_decay, optimizer_no_decay_def))
    optimizer = optimizer_def.create(params)
    return optimizer
Пример #4
0
 def test_multi_optimizer(self):
   params = {'a': 0., 'b': 0.}
   opt_a = optim.GradientDescent(learning_rate=1.)
   opt_b = optim.GradientDescent(learning_rate=10.)
   t_a = traverse_util.t_identity['a']
   t_b = traverse_util.t_identity['b']
   optimizer_def = optim.MultiOptimizer((t_a, opt_a), (t_b, opt_b))
   state = optimizer_def.init_state(params)
   expected_hyper_params = [
       _GradientDescentHyperParams(1.),
       _GradientDescentHyperParams(10.)
   ]
   self.assertEqual(optimizer_def.hyper_params, expected_hyper_params)
   expected_state = [optim.OptimizerState(0, [()])] * 2
   self.assertEqual(state, expected_state)
   grads = {'a': -1., 'b': -2.}
   new_params, new_state = optimizer_def.apply_gradient(
       optimizer_def.hyper_params, params, state, grads)
   expected_params = {'a': 1., 'b': 20.}
   expected_state = [optim.OptimizerState(1, [()])] * 2
   self.assertEqual(new_state, expected_state)
   self.assertEqual(new_params, expected_params)
   # override learning_rate
   hp = optimizer_def.update_hyper_params(learning_rate=2.)
   new_params, new_state = optimizer_def.apply_gradient(
       hp, params, state, grads)
   expected_params = {'a': 2., 'b': 4.}
   self.assertEqual(new_params, expected_params)
Пример #5
0
 def test_multi_optimizer_multiple_matches(self):
     params = {'a': {'x': 0., 'y': 0.}, 'b': {'y': 0, 'z': 0.}}
     opt_a = optim.GradientDescent(learning_rate=1.)
     opt_b = optim.GradientDescent(learning_rate=10.)
     t_a = optim.ModelParamTraversal(
         lambda path, _: path.endswith('/x') or path.endswith('/y'))
     t_b = optim.ModelParamTraversal(lambda path, value: value.dtype == jnp.
                                     int32 or path.endswith('/z'))
     optimizer_def = optim.MultiOptimizer((t_a, opt_a), (t_b, opt_b))
     with self.assertRaisesRegex(
             ValueError, r"Multiple optimizers match.*'y': \[0, 1\]"):
         jax.jit(optimizer_def.init_state)(params)
Пример #6
0
def create_optimizer(model, model_kwargs, learning_rate=1e-4):
  """Create optimizer used for training model.

  MultiOpt is used to apply Adam/LAMB Optimizer with weight decay to all
  parameters except layer_norm and bias and Adam/LAMB Optimizer without weight
  decay for layer_norm and bias params.

  Args:
    model: JAX model to add optimizer to
    model_kwargs: Bert model config parameter dictionary.
    learning_rate: base learning rate used for initializing optimizer

  Returns:
    optimizer: model with Adam/LAMB Optimizer to be used for training
  """
  if FLAGS.use_lamb:
    weight_decay_def = bert_lamb.BertLAMB(
        learning_rate=learning_rate,
        beta1=FLAGS.lamb_beta_1, beta2=FLAGS.lamb_beta_2,
        eps=10**FLAGS.log_epsilon,
        weight_decay=FLAGS.lamb_weight_decay,
        num_layers=model_kwargs['num_layers'])
    no_decay_def = bert_lamb.BertLAMB(
        learning_rate=learning_rate,
        beta1=FLAGS.lamb_beta_1, beta2=FLAGS.lamb_beta_2,
        eps=10**FLAGS.log_epsilon, weight_decay=0.0,
        num_layers=model_kwargs['num_layers'])
  else:
    weight_decay_def = optim.Adam(
        learning_rate=learning_rate, eps=1e-6, weight_decay=FLAGS.lamb_weight_decay)
    no_decay_def = optim.Adam(
        learning_rate=learning_rate, eps=1e-6, weight_decay=0.0)

  def filter_weight_decay(key, _):
    return 'layer_norm' not in key and 'bias' not in key and 'layernorm' not in key

  def filter_other(key, _):
    return 'layer_norm' in key or 'bias' in key or 'layernorm' in key

  weight_decay_traversal = optim.ModelParamTraversal(filter_weight_decay)
  no_decay_traversal = optim.ModelParamTraversal(filter_other)
  optimizer_def = optim.MultiOptimizer(
      (weight_decay_traversal, weight_decay_def),
      (no_decay_traversal, no_decay_def))

  optimizer = optimizer_def.create(model)
  optimizer = jax_utils.replicate(optimizer)
  del model
  return optimizer
Пример #7
0
def create_optimizer(config, model):
    common_kwargs = dict(
        learning_rate=config.learning_rate,
        beta1=0.9,
        beta2=0.999,
        eps=1e-6,
    )
    optimizer_decay_def = optim.Adam(weight_decay=0.01, **common_kwargs)
    optimizer_no_decay_def = optim.Adam(weight_decay=0.0, **common_kwargs)
    decay = optim.ModelParamTraversal(lambda path, _: 'bias' not in path)
    no_decay = optim.ModelParamTraversal(lambda path, _: 'bias' in path)
    optimizer_def = optim.MultiOptimizer((decay, optimizer_decay_def),
                                         (no_decay, optimizer_no_decay_def))
    optimizer = optimizer_def.create(model)
    return optimizer
Пример #8
0
def create_optimizer(config, model, initial_params):
    """Create a model, starting with a pre-trained checkpoint."""
    common_kwargs = dict(
        learning_rate=config.learning_rate,
        beta1=0.9,
        beta2=0.999,
        eps=1e-6,
    )
    optimizer_decay_def = optim.Adam(weight_decay=0.01, **common_kwargs)
    optimizer_no_decay_def = optim.Adam(weight_decay=0.0, **common_kwargs)
    decay = optim.ModelParamTraversal(lambda path, _: 'bias' not in path)
    no_decay = optim.ModelParamTraversal(lambda path, _: 'bias' in path)
    optimizer_def = optim.MultiOptimizer((decay, optimizer_decay_def),
                                         (no_decay, optimizer_no_decay_def))
    # TODO(marcvanzee): MultiOptimizer triggers double XLA compilation on TPU so
    # we use Adam here, but we should investigate why this happens.
    optimizer_def = optim.Adam(learning_rate=config.learning_rate)
    optimizer = optimizer_def.create(model)
    optimizer = optimizer.replicate()
    del model  # don't keep a copy of the initial model
    return optimizer
Пример #9
0
def create_optimizer(config, model):
    if config.optimizer == 'adam':
        optimizer_cls = optim.Adam
    elif config.optimizer == 'lamb':
        optimizer_cls = optim.LAMB
    else:
        raise ValueError('Unsupported value for optimizer: {config.optimizer}')
    common_kwargs = dict(
        learning_rate=config.learning_rate,
        beta1=0.9,
        beta2=0.999,
        eps=1e-6,
    )
    optimizer_decay_def = optimizer_cls(weight_decay=0.01, **common_kwargs)
    optimizer_no_decay_def = optimizer_cls(weight_decay=0.0, **common_kwargs)
    decay = optim.ModelParamTraversal(lambda path, _: 'bias' not in path)
    no_decay = optim.ModelParamTraversal(lambda path, _: 'bias' in path)
    optimizer_def = optim.MultiOptimizer((decay, optimizer_decay_def),
                                         (no_decay, optimizer_no_decay_def))
    optimizer = optimizer_def.create(model)
    return optimizer
Пример #10
0
def main(argv):
    del argv
    # BEGIN GOOGLE-INTERNAL
    xm.setup_work_unit()
    # END GOOGLE-INTERNAL

    tf.enable_v2_behavior()

    if jax.host_id() == 0:
        summary_writer = tensorboard.SummaryWriter(FLAGS.output_dir)
        # Write summaries in background thread to avoid blocking on device sync
        summary_thread = thread.ThreadPoolExecutor(1, 'summary')
    if FLAGS.infeed:
        # Infeed is currently synchronous, so do it in a background thread too
        infeed_pool = thread.ThreadPoolExecutor(jax.local_device_count(),
                                                'infeed')

    rng = random.PRNGKey(0)

    image_size = 224

    batch_size = FLAGS.batch_size
    if batch_size is None:
        batch_size = min(128 * jax.device_count(), 32768)
    eval_batch_size = 128 * jax.device_count()
    local_batch_size = batch_size // jax.host_count()
    local_eval_batch_size = eval_batch_size // jax.host_count()
    device_batch_size = batch_size // jax.device_count()
    device_eval_batch_size = eval_batch_size // jax.device_count()
    device_last_eval_batch_size = (input_pipeline.EVAL_IMAGES %
                                   eval_batch_size) // jax.device_count()

    model_dtype = jnp.bfloat16 if FLAGS.bfloat16 else jnp.float32
    input_dtype = tf.bfloat16 if FLAGS.bfloat16 else tf.float32
    if FLAGS.transpose_images:
        train_input_shape = (224, 224, 3, device_batch_size)
        eval_input_shapes = [(224, 224, 3, bs)
                             for bs in (device_eval_batch_size,
                                        device_last_eval_batch_size)]
    else:
        train_input_shape = (device_batch_size, 224, 224, 3)
        eval_input_shapes = [(bs, 224, 224, 3)
                             for bs in (device_eval_batch_size,
                                        device_last_eval_batch_size)]

    num_epochs = FLAGS.num_epochs
    steps_per_epoch = input_pipeline.TRAIN_IMAGES / batch_size
    logging.info('steps_per_epoch: %f', steps_per_epoch)
    steps_per_eval = int(np.ceil(input_pipeline.EVAL_IMAGES / eval_batch_size))
    logging.info('steps_per_eval: %d', steps_per_eval)

    base_learning_rate = FLAGS.learning_rate * batch_size / 256.
    beta = FLAGS.momentum
    weight_decay = FLAGS.weight_decay

    logging.info('creating and initializing model and optimizer')
    model, state = create_model(rng, device_batch_size, image_size,
                                model_dtype)
    state = jax_utils.replicate(state)
    if FLAGS.lars:
        weight_opt_def = optim.LARS(base_learning_rate,
                                    beta,
                                    weight_decay=weight_decay)
        other_opt_def = optim.Momentum(base_learning_rate,
                                       beta,
                                       weight_decay=0,
                                       nesterov=False)
        learning_rate_fn = polynomial_learning_rate_fn(batch_size,
                                                       steps_per_epoch,
                                                       num_epochs)
    else:
        weight_opt_def = optim.Momentum(base_learning_rate,
                                        beta,
                                        weight_decay=weight_decay,
                                        nesterov=True)
        other_opt_def = optim.Momentum(base_learning_rate,
                                       beta,
                                       weight_decay=0,
                                       nesterov=True)
        learning_rate_fn = piecewise_learning_rate_fn(base_learning_rate,
                                                      steps_per_epoch,
                                                      num_epochs)

    def filter_weights(key, _):
        return 'bias' not in key and 'scale' not in key

    def filter_other(key, _):
        return 'bias' in key or 'scale' in key

    weight_traversal = optim.ModelParamTraversal(filter_weights)
    other_traversal = optim.ModelParamTraversal(filter_other)
    optimizer_def = optim.MultiOptimizer((weight_traversal, weight_opt_def),
                                         (other_traversal, other_opt_def))
    optimizer = optimizer_def.create(model)
    optimizer = optimizer.replicate()
    del model  # do not keep a copy of the initial model

    p_train_step = jax.pmap(partial(train_step,
                                    learning_rate_fn=learning_rate_fn),
                            axis_name='batch')
    p_eval_step = jax.pmap(eval_step, axis_name='batch')

    def device_train_loop_cond(args):
        _, _, _, _, step, epoch = args
        return step // steps_per_epoch == epoch

    def device_train_loop_body(args):
        optimizer, state, metrics, token, step, epoch = args
        (images, labels), token = lax.infeed(
            token,
            shape=(jax.ShapedArray(train_input_shape, model_dtype),
                   jax.ShapedArray((device_batch_size, ), jnp.int32)))
        batch = {'image': images, 'label': labels}
        optimizer, state, metrics = train_step(optimizer, state, batch,
                                               metrics, learning_rate_fn)
        step += 1
        return optimizer, state, metrics, token, step, epoch

    def device_train_loop(optimizer, state, metrics, step, epoch):
        token = lax.create_token(step)
        optimizer, state, metrics, _, step, _ = lax.while_loop(
            device_train_loop_cond, device_train_loop_body,
            (optimizer, state, metrics, token, step, epoch))
        return optimizer, state, metrics, step

    p_train_epoch = jax.pmap(device_train_loop, axis_name='batch')

    if FLAGS.precompile:
        logging.info('precompiling step/epoch functions')
        if FLAGS.infeed:
            # the device training loop condition will immediately be false
            p_train_epoch(optimizer, state, empty_metrics(),
                          jax_utils.replicate(0), jax_utils.replicate(1))
        else:
            batch = {
                'image':
                jnp.zeros((jax.local_device_count(), ) + train_input_shape,
                          model_dtype),
                'label':
                jnp.zeros((jax.local_device_count(), ) + (device_batch_size, ),
                          jnp.int32)
            }
            p_train_step(optimizer, state, batch, empty_metrics())
        for dbs, eis in zip(
            [device_eval_batch_size, device_last_eval_batch_size],
                eval_input_shapes):
            batch = {
                'image':
                jnp.zeros((jax.local_device_count(), ) + eis, model_dtype),
                'label':
                jnp.zeros((jax.local_device_count(), ) + (dbs, ), jnp.int32)
            }
            p_eval_step(optimizer.target, state, batch, empty_metrics())
        allreduce_metrics(empty_metrics())
        pmean = functools.partial(jax.lax.pmean, axis_name='batch')
        jax.pmap(pmean, axis_name='batch')(state)

    logging.info('constructing datasets')
    # pylint: disable=g-complex-comprehension
    train_ds, eval_ds = [
        input_pipeline.load_split(
            local_batch_size if train else local_eval_batch_size,
            image_size=image_size,
            dtype=input_dtype,
            train=train,
            transpose_images=FLAGS.transpose_images) for train in (True, False)
    ]
    # pylint: enable=g-complex-comprehension
    logging.info('constructing dataset iterators')
    train_iter = iter(train_ds)
    eval_iter = iter(eval_ds)

    logging.info('beginning training')
    host_step, device_step = 0, jax_utils.replicate(0)
    for epoch in range(num_epochs):
        device_epoch = jax_utils.replicate(epoch)
        metrics = empty_metrics()
        if FLAGS.infeed:
            optimizer, state, metrics, device_step = p_train_epoch(
                optimizer, state, metrics, device_step, device_epoch)
        while int(host_step // steps_per_epoch) == epoch:
            batch = jax.tree_map(lambda x: x._numpy(), next(train_iter))  # pylint: disable=protected-access
            if FLAGS.infeed:
                for i, device in enumerate(jax.local_devices()):
                    images, labels = batch['image'][i], batch['label'][i]
                    assert images.shape == train_input_shape and labels.dtype == jnp.int32
                    infeed_pool.submit(
                        partial(device.transfer_to_infeed, (images, labels)))
            else:
                optimizer, state, metrics = p_train_step(
                    optimizer, state, batch, metrics)
            host_step += 1
        if FLAGS.train_metrics:
            metrics = allreduce_metrics(metrics)
            if jax.host_id() == 0:
                summary_thread.submit(
                    partial(write_summary, summary_writer, metrics, 'train',
                            epoch + 1))
        if not FLAGS.distributed_batchnorm:  # otherwise it's already synced
            pmean = functools.partial(jax.lax.pmean, axis_name='batch')
            state = jax.pmap(pmean, axis_name='batch')(state)
        metrics = empty_metrics()
        for _ in range(steps_per_eval):
            batch = jax.tree_map(lambda x: x._numpy(), next(eval_iter))  # pylint: disable=protected-access
            metrics = p_eval_step(optimizer.target, state, batch, metrics)
        metrics = allreduce_metrics(metrics)
        if jax.host_id() == 0:
            summary_thread.submit(
                partial(write_summary, summary_writer, metrics, 'eval',
                        epoch + 1))
        # TODO(deveci): do something like this from the summary thread:
        # if summary['accuracy'] > TARGET_ACCURACY:
        #   break
    if jax.host_id() == 0:
        summary_thread.shutdown()
    # Wait until computations are done before exiting
    jax.random.normal(jax.random.PRNGKey(0), ()).block_until_ready()
Пример #11
0
def main(_):
  tf.enable_v2_behavior()

  tf.random.set_seed(FLAGS.seed)
  np.random.seed(FLAGS.seed)
  random.seed(FLAGS.seed)

  if not gfile.isdir(FLAGS.save_dir):
    gfile.mkdir(FLAGS.save_dir)

  hparam_str_dict = dict(seed=FLAGS.seed, lr=FLAGS.lr)
  # Get hyperparmaters
  if FLAGS.xm_parameters:
    for key, value in json.loads(FLAGS.xm_parameters).items():
      if key not in hparam_str_dict:
        hparam_str_dict[key] = value

  hparam_str = ','.join(['%s=%s' % (shorten(k), str(hparam_str_dict[k]))
                         for k in sorted(hparam_str_dict.keys())])

  # Number of local devices for this host.
  n_devices = jax.local_device_count()

  if jax.host_id() == 0:
    summary_writer = tensorboard.SummaryWriter(
        os.path.join(FLAGS.save_dir, 'tb', hparam_str))

  batch_size = FLAGS.per_device_batch_size * n_devices
  io_shape = (FLAGS.per_device_batch_size,
              FLAGS.num_strings_per_task,
              FLAGS.max_characters)
  program_shape = (FLAGS.per_device_batch_size,
                   FLAGS.num_partial_programs,
                   FLAGS.max_program_length)
  split_io_shape = (FLAGS.per_device_batch_size,
                    FLAGS.num_strings_per_task,
                    FLAGS.num_partial_programs,
                    FLAGS.max_characters)

  # Setup DSL
  # ---------------------------------------------------------------------------

  # Build token tables.
  id_char_table = {i+1: char for (i, char) in enumerate(dsl.CHARACTER)}
  char_id_table = {char: id for id, char in id_char_table.items()}
  id_token_table, token_id_table = dsl_tokens.build_token_tables()
  io_vocab_size = len(char_id_table) + 1  # For padding.
  program_vocab_size = len(token_id_table) + 1

  bos_token = token_id_table[dsl.BOS]
  eos_token = token_id_table[dsl.EOS]

  # Parse io and program token sequences (for eval).
  def decode_io(inputs, outputs):
    """Decode io examples tokens."""
    def decode_str(s):
      """Decode string tokens."""
      return ''.join([id_char_table[c_id] for c_id in s if c_id > 0])

    inps, outs = [], []
    for inp, out in zip(inputs, outputs):
      inps.append(decode_str(inp))
      outs.append(decode_str(out))
    return inps, outs

  def decode_program(program):
    """Decode program tokens."""
    # Concatenate all partial programs.
    full_program = []
    for p in program:
      full_program.extend(p[:np.argmax(p == eos_token)].astype(np.int32))
    full_program = np.concatenate([full_program, [eos_token]], axis=0)

    try:
      return dsl.decode_program(full_program, id_token_table)
    except:  # pylint: disable=bare-except
      return None  # Program does not compile.

  # Load Dataset
  # ---------------------------------------------------------------------------
  logging.info('Initializing dataset.')
  if not FLAGS.dataset_filepattern:
    raise ValueError('Must specify filepattern to dataset.')

  # Training dataset.
  dataset = input_pipeline.create_dataset_from_tf_record(
      FLAGS.dataset_filepattern,
      token_id_table,
      char_id_table,
      num_partial_programs=FLAGS.num_partial_programs)
  dataset = dataset.padded_batch(
      batch_size,
      padded_shapes=(io_shape[1:], io_shape[1:], program_shape[1:],
                     split_io_shape[1:]),
      drop_remainder=True)
  # Split evaluation and training.
  eval_ds = dataset.take(FLAGS.num_eval_steps)
  # Decrease batch of predict dataset to handle beam search.
  predict_ds = eval_ds.unbatch().padded_batch(
      int(np.ceil(batch_size / 10)),
      padded_shapes=(io_shape[1:], io_shape[1:], program_shape[1:],
                     split_io_shape[1:]))
  train_ds = dataset.skip(FLAGS.num_eval_steps).repeat().prefetch(5)
  train_iter = train_ds.as_numpy_iterator()

  # Build Model and Optimizer
  # ---------------------------------------------------------------------------
  train_config = base_models.TransformerConfig(
      vocab_size=io_vocab_size,
      output_vocab_size=program_vocab_size,
      shift=True,
      emb_dim=FLAGS.embedding_dim,
      num_heads=FLAGS.num_heads,
      num_layers=FLAGS.num_layers,
      qkv_dim=FLAGS.embedding_dim,
      mlp_dim=FLAGS.hidden_dim,
      max_len=max(FLAGS.max_characters, FLAGS.max_program_length),
      deterministic=False,
      decode=False,
      bos_token=bos_token)
  eval_config = train_config.replace(deterministic=True)
  predict_config = train_config.replace(
      shift=False, deterministic=True, decode=not FLAGS.slow_decode)

  rng = jax.random.PRNGKey(FLAGS.seed)
  rng = jax.random.fold_in(rng, jax.host_id())
  rng, init_rng = jax.random.split(rng)

  m = models.DecomposeExpandingLayerTransformer(
      config=eval_config, num_partial_programs=FLAGS.num_partial_programs,
      use_expanding_layer=FLAGS.use_expanding_layer)
  initial_variables = jax.jit(m.init)(
      init_rng,
      jnp.ones(io_shape, jnp.float32),
      jnp.ones(io_shape, jnp.float32),
      jnp.ones(program_shape, jnp.float32))

  adam_opt_def = optim.Adam(
      FLAGS.lr,
      beta1=0.9,
      beta2=0.98,
      eps=1e-9,
      weight_decay=FLAGS.weight_decay)
  optimizer = adam_opt_def.create(initial_variables['params'])

  del initial_variables  # Don't keep a copy of the initial model.

  start_step = 0
  if FLAGS.restore_checkpoints:
    # Restore unreplicated optimizer + model state from last checkpoint.
    optimizer = checkpoints.restore_checkpoint(
        os.path.join(FLAGS.save_dir, 'checkpoints', hparam_str), optimizer)
    # Grab last step.
    start_step = int(optimizer.state.step)
    logging.info('Found model checkpointed at step %d.', start_step)
    if start_step > 0:
      start_step += 1

  # Build Pretraining Model and Optimizer (if specified)
  # ---------------------------------------------------------------------------
  pretrain_optimizer = None  # Optimizer used for pretrainined
  split_target = None  # Split pretrained model on partial programs.
  if start_step < FLAGS.num_pretrain_steps:
    # Load in pretraining optimizer.
    def filter_fn(path, value):
      del value
      if FLAGS.freeze_encoder and path.startswith('/encoder'):
        return False
      if FLAGS.freeze_decoder and path.startswith('/decoder'):
        return False
      return True
    trainable_weights = optim.ModelParamTraversal(filter_fn)
    pretrain_opt_def = optim.MultiOptimizer((trainable_weights, adam_opt_def))
    pretrain_optimizer = pretrain_opt_def.create(optimizer.target)

    if FLAGS.pretrain_checkpoint_format:
      pretrain_exprs = FLAGS.max_expressions // FLAGS.num_partial_programs
      checkpoint_dir = FLAGS.pretrain_checkpoint_format.format(pretrain_exprs)

      if gfile.isdir(checkpoint_dir):
        # Use the pretrained parameters if no training has occurred yet.
        if start_step == 0:
          restore_paths = []
          if FLAGS.restore_encoder:
            restore_paths.append('target/encoder')
          if FLAGS.restore_decoder:
            restore_paths.append('target/decoder')

          pretrain_optimizer = restore_selected_paths(
              pretrain_optimizer,
              checkpoint_dir=checkpoint_dir,
              restore_paths=restore_paths)
          logging.info('Found model pretrained at %s.', checkpoint_dir)

        if FLAGS.match_split_encoding:
          split_model = models.DecomposeExpandingLayerTransformer(
              config=eval_config, num_partial_programs=1,
              use_expanding_layer=False)
          split_program_shape = (FLAGS.per_device_batch_size,
                                 1,
                                 FLAGS.max_program_length)
          split_initial_variables = jax.jit(split_model.init)(
              init_rng,
              jnp.ones(io_shape, jnp.float32),
              jnp.ones(io_shape, jnp.float32),
              jnp.ones(split_program_shape, jnp.float32))
          split_optimizer = adam_opt_def.create(
              split_initial_variables['params'])
          split_optimizer = checkpoints.restore_checkpoint(
              checkpoint_dir, split_optimizer)
          split_target = split_optimizer.target
      else:
        logging.warn('Could not find model at %s.', checkpoint_dir)

    if FLAGS.match_split_encoding and (split_target is None):
      raise RuntimeError('We could not load the pretrained checkpoint, '
                         'which is needed to match split embeddings.')

  learning_rate_fn = create_learning_rate_scheduler(base_learning_rate=FLAGS.lr)
  p_pretrain_step = jax.pmap(
      functools.partial(
          pretrain_step,
          num_partial_programs=FLAGS.num_partial_programs,
          learning_rate_fn=learning_rate_fn,
          config=train_config,
          use_expanding_layer=FLAGS.use_expanding_layer,
          split_params=split_target),
      axis_name='batch')
  p_train_step = jax.pmap(
      functools.partial(
          train_step,
          num_partial_programs=FLAGS.num_partial_programs,
          learning_rate_fn=learning_rate_fn,
          config=train_config,
          use_expanding_layer=FLAGS.use_expanding_layer),
      axis_name='batch')
  p_eval_step = jax.pmap(
      functools.partial(
          eval_step,
          num_partial_programs=FLAGS.num_partial_programs,
          eos_token=eos_token,
          config=eval_config,
          use_expanding_layer=FLAGS.use_expanding_layer),
      axis_name='batch')
  p_init_cache = jax.pmap(
      functools.partial(
          initialize_cache,
          num_partial_programs=FLAGS.num_partial_programs,
          max_decode_len=FLAGS.max_program_length,
          config=predict_config,
          use_expanding_layer=FLAGS.use_expanding_layer),
      axis_name='batch')
  p_pred_step = jax.pmap(
      functools.partial(
          predict_step,
          num_partial_programs=FLAGS.num_partial_programs,
          max_decode_len=FLAGS.max_program_length,
          eos_token=eos_token,
          config=predict_config,
          slow_decode=FLAGS.slow_decode,
          use_expanding_layer=FLAGS.use_expanding_layer),
      axis_name='batch',
      static_broadcasted_argnums=(4,))
  p_split_pred_step = jax.pmap(
      functools.partial(
          predict_step,
          num_partial_programs=FLAGS.num_partial_programs,
          max_decode_len=FLAGS.max_program_length,
          eos_token=eos_token,
          config=predict_config,
          slow_decode=FLAGS.slow_decode,
          use_expanding_layer=False,
          use_split_encoding=True,
          split_params=split_target),
      axis_name='batch',
      static_broadcasted_argnums=(4,))

  # Main Train Loop
  # ---------------------------------------------------------------------------
  train_rngs = jax.random.split(rng, jax.local_device_count())
  del rng

  # Replicate optimizer.
  if pretrain_optimizer:
    pretrain_optimizer = jax_utils.replicate(pretrain_optimizer)

  optimizer = jax_utils.replicate(optimizer)

  metrics_all = []
  tick = time.time()
  for step in range(start_step, FLAGS.num_train_steps):
    inputs, outputs, programs, split_outputs = (
        common_utils.shard(next(train_iter)))

    if step < FLAGS.num_pretrain_steps:
      pretrain_optimizer, metrics, train_rngs = p_pretrain_step(
          pretrain_optimizer, inputs, outputs, programs,
          split_outputs=split_outputs,
          pretrain_rng=train_rngs)
    else:
      optimizer, metrics, train_rngs = p_train_step(
          optimizer, inputs, outputs, programs,
          train_rng=train_rngs)

    metrics_all.append(metrics)
    is_last_pretrain_step = step == FLAGS.num_pretrain_steps - 1
    is_last_step = step == FLAGS.num_train_steps - 1

    if is_last_pretrain_step:
      optimizer = maybe_copy_model_from_pretraining(
          optimizer, pretrain_optimizer, step, adam_opt_def)

    # Save a Checkpoint
    if (step % FLAGS.checkpoint_freq == 0 and step > 0) or is_last_step:
      optimizer = maybe_copy_model_from_pretraining(
          optimizer, pretrain_optimizer, step, adam_opt_def)
      if jax.host_id() == 0:
        # Save unreplicated optimizer + model state.
        checkpoints.save_checkpoint(
            os.path.join(FLAGS.save_dir, 'checkpoints', hparam_str),
            jax_utils.unreplicate(optimizer),
            step)

    # Periodic metric handling.
    if not step or (step % FLAGS.log_freq != 0 and not is_last_step and
                    not is_last_pretrain_step):
      continue

    optimizer = maybe_copy_model_from_pretraining(
        optimizer, pretrain_optimizer, step, adam_opt_def)

    logging.info('Gathering training metrics.')
    # Training Metrics
    metrics_all = common_utils.get_metrics(metrics_all)
    lr = metrics_all.pop('learning_rate').mean()
    metrics_sums = jax.tree_map(jnp.sum, metrics_all)
    denominator = metrics_sums.pop('denominator')
    summary = jax.tree_map(
        lambda x: x / denominator,  # pylint: disable=cell-var-from-loop
        metrics_sums)
    summary['learning_rate'] = lr
    # Calculate (clipped) perplexity after averaging log-perplexities:
    summary['perplexity'] = jnp.clip(jnp.exp(summary['loss']), a_max=1.0e4)

    if jax.host_id() == 0:
      logging.info('Train in step: %d, loss: %.4f', step, summary['loss'])
      tock = time.time()
      steps_per_sec = FLAGS.log_freq / (tock - tick)
      tick = tock
      summary_writer.scalar('train/steps per second', steps_per_sec, step)
      for key, val in summary.items():
        summary_writer.scalar('train/' + key, val, step)
      summary_writer.flush()
    # Reset metric accumulation for next evaluation cycle.
    metrics_all = []

    # Evaluation Metrics
    logging.info('Gathering evaluation metrics.')
    t_evaluation_start = time.time()

    eval_summary = evaluate(
        p_eval_step=p_eval_step,
        target=optimizer.target,
        eval_ds=eval_ds)
    if jax.host_id() == 0:
      logging.info('Evaluation time: %.4f s step %d, loss: %.4f.',
                   time.time()-t_evaluation_start, step, eval_summary['loss'])
      for key, val in eval_summary.items():
        summary_writer.scalar('eval/' + key, val, step)
      summary_writer.flush()

    # Beam search metrics.
    logging.info('Gathering beam search metrics.')
    for beam_size in [1, 10, 12, 24, 48, 96]:
      t_inference_start = time.time()

      pred_acc, message = predict_and_compute_score(
          p_pred_step=p_pred_step,
          p_init_cache=p_init_cache,
          target=optimizer.target,
          predict_ds=predict_ds,
          decode_io=decode_io,
          decode_program=decode_program,
          beam_size=beam_size,
          num_partial_programs=FLAGS.num_partial_programs,
          use_best_first_search=FLAGS.best_first_search,
          slow_decode=FLAGS.slow_decode)

      # Write to tensorboard.
      if jax.host_id() == 0:
        slow_or_fast = 'slow' if FLAGS.slow_decode else 'fast'
        logging.info(
            'Prediction time, %s (beam %d): %.4f s, step %d, score %.4f',
            slow_or_fast, beam_size, time.time() - t_inference_start, step,
            pred_acc)
        beam_search_or_bfs = 'bfs' if FLAGS.best_first_search else 'beam-search'
        summary_writer.scalar(
            'predict-{}/score-{}-{}'.format(slow_or_fast,
                                            beam_search_or_bfs,
                                            beam_size),
            pred_acc, step)
        summary_writer.text('samples-{}'.format(beam_size),
                            '\n------\n'.join(message), step)
        summary_writer.flush()

      if step < FLAGS.num_pretrain_steps and FLAGS.match_split_encoding:
        pred_acc, message = predict_and_compute_score(
            p_pred_step=p_split_pred_step,
            p_init_cache=p_init_cache,
            target=optimizer.target,
            predict_ds=predict_ds,
            decode_io=decode_io,
            decode_program=decode_program,
            beam_size=beam_size,
            num_partial_programs=FLAGS.num_partial_programs,
            use_best_first_search=FLAGS.best_first_search,
            slow_decode=FLAGS.slow_decode)

        # Write to tensorboard.
        if jax.host_id() == 0:
          slow_or_fast = 'slow' if FLAGS.slow_decode else 'fast'
          beam_search_or_bfs = ('bfs' if FLAGS.best_first_search
                                else 'beam-search')
          summary_writer.scalar(
              'predict-split-{}/score-{}-{}'.format(slow_or_fast,
                                                    beam_search_or_bfs,
                                                    beam_size),
              pred_acc, step)
          summary_writer.text('samples-split-{}'.format(beam_size),
                              '\n------\n'.join(message), step)
          summary_writer.flush()
Пример #12
0
def main(argv):
    del argv
    # BEGIN GOOGLE-INTERNAL
    xm.setup_work_unit()
    # END GOOGLE-INTERNAL

    tf.enable_v2_behavior()
    init_mllogger()

    mllogger.event('cache_clear')
    mllogger.start('init_start')
    mllogger.event('submission_org', 'Google')
    mllogger.event('submission_platform',
                   'TPUv3-{}'.format(jax.device_count()))
    mllogger.event('submission_division', 'closed')
    mllogger.event('submission_status', 'research')
    mllogger.event('submission_benchmark', 'resnet')
    mllogger.event('train_samples', input_pipeline.TRAIN_IMAGES)
    mllogger.event('eval_samples', input_pipeline.EVAL_IMAGES)

    if jax.host_id() == 0:
        summary_writer = tensorboard.SummaryWriter(FLAGS.output_dir)
        # Write summaries in background thread to avoid blocking on device sync
        summary_thread = thread.ThreadPoolExecutor(1, 'summary')
    # Infeed is currently synchronous, so do it in a background thread too
    infeed_pool = thread.ThreadPoolExecutor(jax.local_device_count(), 'infeed')

    if FLAGS.seed is not None:
        seed = FLAGS.seed
    else:
        seed = np.uint32(time.time() if jax.host_id() == 0 else 0)
        seed = per_host_sum_pmap(seed)

    mllogger.event('seed', int(seed))
    key = random.PRNGKey(seed)

    batch_size = FLAGS.batch_size
    if batch_size == -1:
        if jax.device_count() > 4096:
            batch_size = 65536
        else:
            batch_size = min(128 * jax.device_count(), 32768)
    mllogger.event('global_batch_size', batch_size)
    eval_batch_size = min(input_pipeline.EVAL_IMAGES, 256 * jax.device_count())
    device_batch_size = batch_size // jax.device_count()
    device_eval_batch_size = int(
        math.ceil(eval_batch_size / jax.device_count()))

    model_dtype = jnp.bfloat16 if FLAGS.bfloat16 else jnp.float32
    input_dtype = tf.bfloat16 if FLAGS.bfloat16 else tf.float32

    num_epochs = FLAGS.num_epochs
    if num_epochs is None:
        if batch_size < 32768:
            num_epochs = 56
        elif batch_size < 65536:
            num_epochs = 64
        else:
            num_epochs = 92

    steps_per_epoch = input_pipeline.TRAIN_IMAGES / batch_size
    # match TF submission behavior (round steps per loop up)
    steps_per_loop = int(math.ceil(steps_per_epoch * FLAGS.epochs_per_loop))
    # also apply rounding loop up to next step to "epochs" in LR schedule
    steps_per_epoch *= steps_per_loop / (steps_per_epoch *
                                         FLAGS.epochs_per_loop)

    steps_per_eval = int(
        math.ceil(input_pipeline.EVAL_IMAGES / eval_batch_size))

    base_learning_rate = FLAGS.learning_rate * batch_size / 256.
    beta = FLAGS.momentum
    if beta is None:
        if batch_size < 32768:
            beta = 0.9
        elif batch_size < 65536:
            beta = 0.929
        else:
            beta = 0.9537213777059405
    weight_decay = FLAGS.weight_decay
    if weight_decay is None:
        weight_decay = 2e-4 if batch_size < 32768 else 1e-4

    space_to_depth = FLAGS.space_to_depth
    if space_to_depth is None:
        space_to_depth = device_batch_size <= 8

    image_format = FLAGS.image_format
    if image_format is None:
        if space_to_depth and device_batch_size <= 8:
            image_format = 'HWNC'
        else:
            image_format = 'HWCN'

    image_size = input_pipeline.IMAGE_SIZE
    if space_to_depth:
        train_input_shape = (device_batch_size, image_size // 2,
                             image_size // 2, 12)
        eval_input_shape = (device_eval_batch_size, image_size // 2,
                            image_size // 2, 12)
    else:
        train_input_shape = (device_batch_size, image_size, image_size, 3)
        eval_input_shape = (device_eval_batch_size, image_size, image_size, 3)
    if image_format == 'HWCN':
        train_input_shape = tuple(train_input_shape[i] for i in [1, 2, 3, 0])
        eval_input_shape = tuple(eval_input_shape[i] for i in [1, 2, 3, 0])
    elif image_format == 'HWNC':
        train_input_shape = tuple(train_input_shape[i] for i in [1, 2, 0, 3])
        eval_input_shape = tuple(eval_input_shape[i] for i in [1, 2, 0, 3])

    model, state = create_model(key, device_batch_size, image_size,
                                model_dtype, space_to_depth)

    if FLAGS.lars:
        mllogger.event('opt_name', 'lars')
        mllogger.event('lars_opt_weight_decay', weight_decay)
        mllogger.event('lars_opt_momentum', beta)
        mllogger.event('lars_epsilon', 0)
        weight_opt_def = optim.LARS(base_learning_rate,
                                    beta,
                                    weight_decay=weight_decay)
        other_opt_def = optim.Momentum(base_learning_rate,
                                       beta,
                                       weight_decay=0,
                                       nesterov=False)
        learning_rate_fn = polynomial_learning_rate_fn(batch_size,
                                                       steps_per_epoch,
                                                       num_epochs)
    else:
        mllogger.event('opt_name', 'sgd')
        mllogger.event('sgd_opt_momentum', beta)
        weight_opt_def = optim.Momentum(base_learning_rate,
                                        beta,
                                        weight_decay=weight_decay,
                                        nesterov=True)
        other_opt_def = optim.Momentum(base_learning_rate,
                                       beta,
                                       weight_decay=0,
                                       nesterov=True)
        learning_rate_fn = piecewise_learning_rate_fn(base_learning_rate,
                                                      steps_per_epoch,
                                                      num_epochs)

    def filter_weights(key, _):
        return 'bias' not in key and 'scale' not in key

    def filter_other(key, _):
        return 'bias' in key or 'scale' in key

    weight_traversal = optim.ModelParamTraversal(filter_weights)
    other_traversal = optim.ModelParamTraversal(filter_other)
    optimizer_def = optim.MultiOptimizer((weight_traversal, weight_opt_def),
                                         (other_traversal, other_opt_def))
    optimizer = optimizer_def.create(model)
    del model  # do not keep a copy of the initial model

    optimizer = broadcast(optimizer)
    state = broadcast(state)
    empty_metrics = broadcast({'samples': 0, 'loss': 0., 'accuracy': 0})

    p_allreduce_metrics = jax.pmap(allreduce_metrics, axis_name='batch')

    p_sync_batchnorm_stats = jax.pmap(sync_batchnorm_stats, axis_name='batch')

    def host_loop_train_step(optimizer, state, metrics):
        token = lax.create_token(optimizer.state[0].step)
        batch, token = lax.infeed(token,
                                  shape=(jax.ShapedArray(
                                      train_input_shape, model_dtype),
                                         jax.ShapedArray((device_batch_size, ),
                                                         jnp.int32)))
        optimizer, state, metrics = train_step(optimizer, state, batch,
                                               metrics, learning_rate_fn,
                                               image_format, space_to_depth)
        return optimizer, state, metrics

    p_host_loop_train_step = jax.pmap(host_loop_train_step,
                                      axis_name='batch',
                                      in_axes=(None, 0, 0))

    def host_loop_eval_step(model, state, metrics):
        token = lax.create_token(metrics['samples'])
        batch, token = lax.infeed(
            token,
            shape=(jax.ShapedArray(eval_input_shape, model_dtype),
                   jax.ShapedArray((device_eval_batch_size, ), jnp.int32)))
        metrics = eval_step(model, state, batch, metrics, image_format,
                            space_to_depth)
        return metrics

    p_host_loop_eval_step = jax.pmap(host_loop_eval_step,
                                     axis_name='batch',
                                     in_axes=(None, None, 0))

    def device_train_loop_cond(args):
        _, _, _, _, step, loop = args
        return step // steps_per_loop == loop

    def device_train_loop_body(args):
        optimizer, state, metrics, token, step, loop = args
        batch, token = lax.infeed(token,
                                  shape=(jax.ShapedArray(
                                      train_input_shape, model_dtype),
                                         jax.ShapedArray((device_batch_size, ),
                                                         jnp.int32)))
        optimizer, state, metrics = train_step(optimizer, state, batch,
                                               metrics, learning_rate_fn,
                                               image_format, space_to_depth)
        step += 1
        return optimizer, state, metrics, token, step, loop

    def device_train_loop(optimizer, state, metrics, step, loop):
        token = lax.create_token(step)
        optimizer, state, metrics, _, step, _ = lax.while_loop(
            device_train_loop_cond, device_train_loop_body,
            (optimizer, state, metrics, token, step, loop))
        state = sync_batchnorm_stats(state)
        metrics = allreduce_metrics(metrics)
        return optimizer, state, metrics, step

    p_train_loop = jax.pmap(device_train_loop,
                            axis_name='batch',
                            in_axes=(None, None, 0, None, None))

    # BEGIN GOOGLE-INTERNAL
    def maybe_start_xprof(seconds):
        if jax.host_id() == 0 and FLAGS.xprof:
            xprof = xprof_session.XprofSession()
            xprof.start_session('REDACTED', True, 2)

            def sleep_and_end_xprof():
                time.sleep(seconds)
                logging.info(
                    'Xprof URL: %s',
                    xprof.end_session_and_get_url(
                        tag='flax resnet, {} devices, batch {} per device'.
                        format(jax.device_count(), device_batch_size)))

            thread.ThreadPoolExecutor(1, 'xprof').submit(sleep_and_end_xprof)

    # END GOOGLE-INTERNAL

    if FLAGS.precompile:
        logging.info('precompiling step/loop functions')
        if FLAGS.device_loop:
            # the device training loop condition will immediately be false
            p_train_loop(unbroadcast(optimizer), unbroadcast(state),
                         empty_metrics, jnp.array(0, dtype=jnp.int32), 1)
        else:
            for device in jax.local_devices():
                images = np.zeros(train_input_shape, model_dtype)
                labels = np.zeros((device_batch_size, ), np.int32)
                infeed_pool.submit(
                    partial(device.transfer_to_infeed, (images, labels)))
            p_host_loop_train_step(unbroadcast(optimizer), state,
                                   empty_metrics)
            p_sync_batchnorm_stats(state)
        for device in jax.local_devices():
            images = np.zeros(eval_input_shape, model_dtype)
            labels = np.zeros((device_eval_batch_size, ), np.int32)
            infeed_pool.submit(
                partial(device.transfer_to_infeed, (images, labels)))
        p_host_loop_eval_step(unbroadcast(optimizer.target),
                              unbroadcast(state), empty_metrics)
        p_allreduce_metrics(empty_metrics)['accuracy'].block_until_ready()
        logging.info('finished precompiling')

    # BEGIN GOOGLE-INTERNAL
    maybe_start_xprof(20)
    # END GOOGLE-INTERNAL
    if not FLAGS.fake_data:
        logging.info('constructing datasets')
        # pylint: disable=g-complex-comprehension
        train_ds, eval_ds = [
            input_pipeline.load_split(
                device_batch_size if train else device_eval_batch_size,
                dtype=input_dtype,
                train=train,
                image_format=image_format,
                space_to_depth=space_to_depth,
                cache_uncompressed=jax.device_count() > 64)
            for train in (True, False)
        ]
        logging.info('constructing dataset iterators')
        train_iter = iter(train_ds)
        eval_iter = iter(eval_ds)

    local_devices = jax.local_devices()
    host_step, device_step = 0, broadcast(0)
    mllogger.end('init_stop')
    mllogger.start('run_start')
    mllogger.start('block_start',
                   metadata={
                       'first_epoch_num': 1,
                       'epoch_count': FLAGS.epochs_per_loop
                   })
    for loop in range(int(math.ceil(num_epochs / FLAGS.epochs_per_loop)) + 2):
        # BEGIN GOOGLE-INTERNAL
        if loop == 10: maybe_start_xprof(1)
        # END GOOGLE-INTERNAL
        metrics = empty_metrics
        if FLAGS.device_loop:
            optimizer, state, metrics, device_step = p_train_loop(
                unbroadcast(optimizer), unbroadcast(state), metrics,
                unbroadcast(device_step), loop)
        while int(host_step // steps_per_loop) == loop:
            if not FLAGS.device_loop:
                optimizer, state, metrics = p_host_loop_train_step(
                    unbroadcast(optimizer), state, metrics)
            # pylint: disable=protected-access
            while infeed_pool._work_queue.qsize() > 100:
                time.sleep(0.01)
            for device in local_devices:
                if FLAGS.fake_data:
                    images = np.zeros(train_input_shape, model_dtype)
                    labels = np.zeros((device_batch_size, ), np.int32)
                else:
                    # pylint: disable=protected-access
                    images, labels = jax.tree_map(lambda x: x._numpy(),
                                                  next(train_iter))
                assert images.shape == train_input_shape and labels.dtype == jnp.int32
                infeed_pool.submit(
                    partial(device.transfer_to_infeed, (images, labels)))
            host_step += 1
        epoch = (loop + 1) * FLAGS.epochs_per_loop
        if FLAGS.train_metrics:
            if not FLAGS.device_loop:
                metrics = p_allreduce_metrics(metrics)
            if jax.host_id() == 0:
                summary_thread.submit(
                    partial(write_summary, summary_writer, metrics, 'train',
                            epoch))
        if not FLAGS.device_loop:
            state = p_sync_batchnorm_stats(state)
        metrics = empty_metrics
        for _ in range(steps_per_eval):
            metrics = p_host_loop_eval_step(unbroadcast(optimizer.target),
                                            unbroadcast(state), metrics)
            for device in local_devices:
                if FLAGS.fake_data:
                    images = np.zeros(eval_input_shape, model_dtype)
                    labels = np.zeros((device_eval_batch_size, ), np.int32)
                else:
                    # pylint: disable=protected-access
                    images, labels = jax.tree_map(lambda x: x._numpy(),
                                                  next(eval_iter))
                assert images.shape == eval_input_shape and labels.dtype == jnp.int32, \
                    'images.shape={}'.format(images.shape)
                infeed_pool.submit(
                    partial(device.transfer_to_infeed, (images, labels)))
        metrics = p_allreduce_metrics(metrics)
        if jax.host_id() == 0:
            summary_thread.submit(
                partial(write_summary, summary_writer, metrics, 'eval', epoch))
    # Wait until computations are done before exiting
    p_allreduce_metrics(metrics)['accuracy'].block_until_ready()
    if jax.host_id() == 0:
        summary_thread.shutdown()
        if not DONE:
            mllogger.end('run_stop', metadata={'status': 'aborted'})
Пример #13
0
def get_optimizer(hps):
    """Constructs the optimizer from the given HParams."""
    if 'weight_decay' in hps.opt_hparams:
        weight_decay = hps.opt_hparams['weight_decay']
    else:
        weight_decay = 0

    if hps.optimizer == 'sgd':
        return optimizers.GradientDescent(learning_rate=None)
    elif hps.optimizer == 'nesterov':
        return optimizers.Momentum(learning_rate=None,
                                   beta=hps.opt_hparams['momentum'],
                                   nesterov=True,
                                   weight_decay=weight_decay)
    elif hps.optimizer == 'momentum':
        return optimizers.Momentum(learning_rate=None,
                                   beta=hps.opt_hparams['momentum'],
                                   nesterov=False,
                                   weight_decay=weight_decay)
    elif hps.optimizer == 'lamb':
        assert hps.l2_decay_factor is None or weight_decay == 0.0
        return optimizers.LAMB(learning_rate=None,
                               beta1=hps.opt_hparams['beta1'],
                               beta2=hps.opt_hparams['beta2'],
                               eps=hps.opt_hparams['epsilon'],
                               weight_decay=weight_decay)
    elif hps.optimizer == 'adam':
        assert hps.l2_decay_factor is None or weight_decay == 0.0
        return optimizers.Adam(learning_rate=None,
                               beta1=hps.opt_hparams['beta1'],
                               beta2=hps.opt_hparams['beta2'],
                               eps=hps.opt_hparams['epsilon'],
                               weight_decay=weight_decay)
    elif hps.optimizer == 'lars':
        assert hps.l2_decay_factor is None or weight_decay == 0.0
        return optimizers.LARS(learning_rate=None,
                               beta=hps.opt_hparams['beta'],
                               weight_decay=weight_decay)
    elif hps.optimizer == 'mlperf_lars_resnet':
        assert hps.l2_decay_factor is None or weight_decay == 0.0
        weight_opt_def = optimizers.LARS(learning_rate=None,
                                         beta=hps.opt_hparams['beta'],
                                         weight_decay=weight_decay)
        other_opt_def = optimizers.Momentum(learning_rate=None,
                                            beta=hps.opt_hparams['beta'],
                                            weight_decay=0,
                                            nesterov=False)

        def filter_weights(key, _):
            return 'bias' not in key and 'scale' not in key

        def filter_other(key, _):
            return 'bias' in key or 'scale' in key

        weight_traversal = optimizers.ModelParamTraversal(filter_weights)
        other_traversal = optimizers.ModelParamTraversal(filter_other)
        return optimizers.MultiOptimizer((weight_traversal, weight_opt_def),
                                         (other_traversal, other_opt_def))
    elif hps.optimizer == 'mlperf_lamb':
        assert hps.l2_decay_factor is None or weight_decay == 0.0
        weight_opt_def = optimizers.LAMB(
            learning_rate=None,
            beta1=hps.opt_hparams['beta1'],
            beta2=hps.opt_hparams['beta2'],
            eps=hps.opt_hparams['epsilon'],
            weight_decay=hps.opt_hparams['lamb_weight_decay'])
        other_opt_def = optimizers.Adam(
            learning_rate=None,
            beta1=hps.opt_hparams['beta1'],
            beta2=hps.opt_hparams['beta2'],
            eps=hps.opt_hparams['epsilon'],
            weight_decay=hps.opt_hparams['adam_weight_decay'])

        def filter_weights(key, _):
            return 'bias' not in key and 'scale' not in key

        def filter_other(key, _):
            return 'bias' in key or 'scale' in key

        weight_traversal = optimizers.ModelParamTraversal(filter_weights)
        other_traversal = optimizers.ModelParamTraversal(filter_other)
        return optimizers.MultiOptimizer((weight_traversal, weight_opt_def),
                                         (other_traversal, other_opt_def))
    else:
        raise NotImplementedError('Optimizer {} not implemented'.format(
            hps.optimizer))