Пример #1
0
    def test_run_optimize(self):
        gp_noise_process = flexnoise.GPNoiseProcess(self.problem, self.kernel,
                                                    [2.0], self.gp_times)

        y = gp_noise_process.run_optimize(num_restarts=3, iprint=False)
        self.assertEqual(len(y),
                         self.problem.n_parameters() + 2 * len(self.gp_times))
Пример #2
0
    def test_run_mcmc(self):
        gp_noise_process = flexnoise.GPNoiseProcess(self.problem, self.kernel,
                                                    [2.0], self.gp_times)

        iters = 300
        chain = gp_noise_process.run_mcmc(iters, 3, iprint=False)

        self.assertEqual(
            chain.shape,
            (iters // 2, self.problem.n_parameters() + 2 * len(self.gp_times)))
Пример #3
0
    def test_set_gp_beta(self):
        gp_noise_process = flexnoise.GPNoiseProcess(self.problem, self.kernel,
                                                    [2.0], self.gp_times)

        dt = self.times[1] - self.times[0]
        limit = 0.01
        beta = gp_noise_process.set_gp_beta(100, dt, limit=0.01)
        expected = 100 * dt / math.sqrt(-2 * math.log(limit))

        self.assertAlmostEqual(beta, expected)
Пример #4
0
    def test_set_gp_hyperparameters(self):
        gp_noise_process = flexnoise.GPNoiseProcess(self.problem, self.kernel,
                                                    [2.0], self.gp_times)

        gp_noise_process.set_gp_hyperparameters(
            mu=1.0,
            alpha=10.0,
            beta=2.0,
        )

        self.assertEqual(gp_noise_process.mu, 1.0)
        self.assertEqual(gp_noise_process.alpha, 10.0)
        self.assertEqual(gp_noise_process.beta, 2.0)
Пример #5
0
def run_figureS2(num_runs=3, output_dir='./'):
    """Run the Gaussian process on block noise data.

    This function runs the simulations and saves the results to pickle.
    """
    random.seed(12345)
    np.random.seed(12345)

    all_fits = []
    iid_runs = []
    sigmas = []
    mult_runs = []
    gp_runs = []
    for run in range(num_runs):
        # Make a synthetic time series
        times, values, data = generate_time_series(model='logistic',
                                                   noise='blocks',
                                                   n_times=625)

        # Make Pints model and problem
        model = pints.toy.LogisticModel()
        problem = pints.SingleOutputProblem(model, times, data)

        # Initial conditions for model parameters
        model_starting_point = [0.08, 50]

        # Infer the nonstationary kernel fit
        # Run an optimization assumming IID
        log_prior = pints.UniformLogPrior([0] * 3, [1e6] * 3)
        log_likelihood = pints.GaussianLogLikelihood(problem)
        log_posterior = pints.LogPosterior(log_likelihood, log_prior)
        opt = pints.OptimisationController(log_posterior,
                                           model_starting_point + [2])
        xbest, fbest = opt.run()

        # Run the GP fit, using the best fit for initialization
        gp_times = times[::25]
        kernel = flexnoise.kernels.GPLaplacianKernel
        gnp = flexnoise.GPNoiseProcess(problem, kernel, xbest[:2], gp_times)
        gnp.set_gp_hyperparameters(mu=0.0, alpha=1.0, beta_num_points=200)
        x = gnp.run_optimize(num_restarts=100, parallel=True, maxiter=150)
        all_fits.append(x)

    # Save all results to pickle
    kernel = kernel(None, gp_times)
    results = [all_fits, times, data, values, model, problem, kernel]

    fname = os.path.join(output_dir, 'figS2_data.pkl')
    with open(fname, 'wb') as f:
        pickle.dump(results, f)
Пример #6
0
 def test_construct(self):
     flexnoise.GPNoiseProcess(self.problem, self.kernel, [2.0],
                              self.gp_times)
Пример #7
0
def run_figure2(num_mcmc_samples=20000,
                num_mcmc_chains=3,
                num_runs=8,
                output_dir='./'):
    """Run the Gaussian process on multiplicative data.

    This function runs the simulations and saves the results to pickle.
    """
    random.seed(123)
    np.random.seed(123)

    all_fits = []
    iid_runs = []
    sigmas = []
    mult_runs = []
    gp_runs = []
    for run in range(num_runs):
        # Make a synthetic time series
        times, values, data = generate_time_series(model='logistic',
                                                   noise='multiplicative',
                                                   n_times=251)

        # Make Pints model and problem
        model = pints.toy.LogisticModel()
        problem = pints.SingleOutputProblem(model, times, data)

        # Initial conditions for model parameters
        model_starting_point = [0.08, 50]

        # Run MCMC for IID posterior
        likelihood = pints.GaussianLogLikelihood
        x0 = model_starting_point + [2]
        posterior_iid = run_pints(problem, likelihood, x0, num_mcmc_samples)
        iid_runs.append(posterior_iid)

        # Save standard deviations from IID runs
        sigma = np.median(posterior_iid[:, 2])
        sigmas.append(sigma)

        # Run MCMC for multiplicative noise posterior
        likelihood = pints.MultiplicativeGaussianLogLikelihood
        x0 = model_starting_point + [0.5, 0.5]
        posterior_mult = run_pints(problem, likelihood, x0, num_mcmc_samples)
        mult_runs.append(posterior_mult)

        # Infer the nonstationary kernel fit
        # Run an optimization assumming IID
        log_prior = pints.UniformLogPrior([0] * 3, [1e6] * 3)
        log_likelihood = pints.GaussianLogLikelihood(problem)
        log_posterior = pints.LogPosterior(log_likelihood, log_prior)
        opt = pints.OptimisationController(log_posterior,
                                           model_starting_point + [2])
        xbest, fbest = opt.run()

        # Run the GP fit, using the best fit for initialization
        gp_times = times[::10]
        kernel = flexnoise.kernels.GPLaplacianKernel
        gnp = flexnoise.GPNoiseProcess(problem, kernel, xbest[:2], gp_times)
        gnp.set_gp_hyperparameters(mu=0.0, alpha=1.0, beta_num_points=200)
        x = gnp.run_optimize(num_restarts=100, parallel=True, maxiter=150)
        all_fits.append(x)

        # Run MCMC for multivariate normal noise
        kernel = flexnoise.kernels.GPLaplacianKernel(None, gp_times)
        kernel.parameters = x[2:]
        cov = kernel.get_matrix(times)
        likelihood = flexnoise.CovarianceLogLikelihood
        x0 = model_starting_point
        posterior_gp = run_pints(problem,
                                 likelihood,
                                 x0,
                                 num_mcmc_samples,
                                 likelihood_args=[cov])
        gp_runs.append(posterior_gp)

    # Save all results to pickle
    results = [
        iid_runs, mult_runs, all_fits, gp_runs, times, data, values, model,
        problem, kernel, sigmas
    ]

    fname = os.path.join(output_dir, 'fig2_data.pkl')
    with open(fname, 'wb') as f:
        pickle.dump(results, f)