Пример #1
0
def create_poly(xs: List[int], p: int) -> nmod_poly:
    """
    returns the polynomial (z - x[0]) ... (z - x[N-1]) mod p
    """
    ans: nmod_poly = nmod_poly([1], p)
    for x in xs:
        ans *= nmod_poly([-x, 1], p)
    return ans
Пример #2
0
def ring_generate(irr, p):
    power_dict = {(1, ): 0}
    element_dict = {0: [1]}
    test_poly = flint.nmod_poly([1], 2)
    alpha_poly = flint.nmod_poly([0, 1], 2)
    for i in range(1, p**irr.degree() - 1):
        test_poly = (test_poly * alpha_poly) % irr.poly
        coeffs = tuple(int(e) for e in test_poly.coeffs())
        if coeffs in power_dict:
            return power_dict, element_dict
        power_dict[coeffs] = i
        element_dict[i] = list(coeffs)
    return power_dict, element_dict
Пример #3
0
def get_phigh(tlist: List[int], s: int, p: int) -> nmod_poly:
    """
    return a polynomial object where the caller specfies the highest coefficents
    except the highest cofficent which takes the value 1
    """
    nzeros: int = s - len(tlist)
    coeffs: List[int] = [0] * nzeros
    coeffs.extend(tlist)
    coeffs.append(1)
    return nmod_poly(coeffs, p)
Пример #4
0
def has_repeated_roots(poly: nmod_poly, prime: int) -> bool:
    """
    returns True if the polynomial has repeated roots
    """
    if prime < 2 or not isprime(prime):
        raise FuzzyError("prime is not prime")
    temp: List[int] = [0] * (prime + 1)
    temp[-1] = 1
    temp[1] = -1
    zpoly: nmod_poly = nmod_poly(temp, prime)
    result: nmod_poly = zpoly % poly
    return result.coeffs() != []
Пример #5
0
def Berlekamp_Welch(
        aList: List[int],   # inputs
        bList: List[int],   # received codeword
        k: int,
        t: int,
        p: int              # prime
    ) -> nmod_poly:
    """
    Berlekamp-Welsch-Decoder

    This function throws an exception if no solution exists

    see https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Welch_algorithm
    """
    if len(aList) < 1:
        raise FuzzyError("aList is empty")
    if len(aList) != len(bList):
        raise FuzzyError("bList is empty")
    if k < 1 or t < 1:
        raise FuzzyError("k={0} and t={1} are not consistent".format(k, t))
    if p < 2 or not isprime(p):
        raise FuzzyError("p is not prime")

    n = len(aList)

    # Create the Berlekamp-Welch system of equations
    # and store them as an n x n matrix 'm' and a
    # constant source vector 'y' of length n

    m_entries: List[nmod] = []
    y_entries: List[nmod] = []
    for i in range(n):
        a: int = aList[i]
        b: int = bList[i]
        apowers: List[nmod] = mod_get_powers(a, k + t, p)
        for j in range(k+t):
            m_entries.append(apowers[j])
        for j in range(t):
            m_entries.append(-b * apowers[j])
        y_entries.append(b * apowers[t])

    m: nmod_mat = nmod_mat(n, n, m_entries, p)
    y: nmod_mat = nmod_mat(n, 1, y_entries, p)

    # solve the linear system of equations m * x = y for x

    try:
        x = gauss.solve(m, y).entries()
    except gauss.NoSolutionError:
        raise FuzzyError("No solution exists")

    # create the polynomials Q and E

    Qs: List[nmod] = x[:k+t]
    Es: List[nmod] = x[k+t:]
    Es.append(nmod(1, p))
    Q: nmod_poly = nmod_poly(Qs, p)
    E: nmod_poly = nmod_poly(Es, p)

    Answer: nmod_poly = Q // E
    Remainder: nmod_poly = Q - Answer * E
    if len(Remainder.coeffs()) > 0:
        raise FuzzyError("Remainder is not zero")
    return Answer
Пример #6
0
 def from_numpy(arr):
     return GF2Poly(flint.nmod_poly([int(e) for e in arr.flat], 2))
Пример #7
0
 def from_list(arr):
     return GF2Poly(flint.nmod_poly(arr, 2))