import seaborn as sns import scipy.stats as sst from flowcat import utils, io_functions NAME = "result_analysis_removeedge" RESULTS = { "path": utils.URLPath("output"), "names": ["classifier_ungated", "classifier_gated_removeedge"], } OUTPUT = utils.URLPath(f"output/{NAME}") LOGGER = utils.setup_logging(utils.URLPath(f"logs/{NAME}_{utils.create_stamp()}"), NAME) def get_result_dirs(path: utils.URLPath, names: list): """Get result directories for individual iterations from given path and names""" result_dirs = { name: Metrics(list(map(Result, path.glob(f"./{name}*")))) for name in names } return result_dirs @dataclass class Result: path: utils.URLPath @property def json_results(self):
LOGGER.info("Tube 1 %s", sample) data = sample.get_data() LOGGER.info(data) LOGGER.info( f"{data.data.shape}, {data.data.min(axis=1)}, {data.data.max(axis=1)}") SEED = None OUTPUT = utils.URLPath(f"output/{NAME}") LOGDIR = utils.URLPath(f"logs/{NAME}_{utils.create_stamp()}") INPUT = { "data": utils.URLPath("output/ungated/data"), "meta": utils.URLPath("output/samples/meta.json.gz"), } LOGGER = utils.setup_logging(LOGDIR, NAME) set_seed(SEED) dataset = io_functions.load_case_collection(INPUT["data"], INPUT["meta"]) check_dataset(dataset) train, test = dataset.create_split(0.9) io_functions.save_json(train.labels, OUTPUT / "train_ids.json") io_functions.save_json(test.labels, OUTPUT / "test_ids.json") reference = train.sample(1) LOGGER.info("Reference dataset: %s", reference) LOGGER.info("Reference labels: %s", reference.labels) model = flowcat.FlowCat()