Пример #1
0
def clean_image(img, cleanimg):
    import floyds
    from floyds.util import readkey3, readhdr, delete

    array, header = floyds.cosmics.fromfits(img, verbose=False)
    import warnings

    def fxn():
        warnings.warn(" ", DeprecationWarning)

    original_filters = warnings.filters[:]
    # Ignore warnings.
    warnings.simplefilter("ignore")
    try:
        c = floyds.cosmics.cosmicsimage(array,
                                        gain=readkey3(header, 'gain'),
                                        readnoise=readkey3(header, 'ron'),
                                        sigclip=5.0,
                                        sigfrac=0.3,
                                        objlim=5.0,
                                        verbose=False)
        c.run(maxiter=4, verbose=False)
        fxn()
    finally:
        warnings.filters = original_filters

    if not cleanimg:
        delete(img)
        cleanimg = img
    floyds.cosmics.tofits(cleanimg, c.cleanarray, header, verbose=False)
    return cleanimg
Пример #2
0
def airmass(img, overwrite=True, _observatory='lasilla'):
    import floyds
    from floyds.util import readhdr, readkey3, delete
    from pyraf import iraf

    iraf.astutil(_doprint=0)
    hdr = readhdr(img)
    if readkey3(hdr, 'UTC'):
        _UT = (readkey3(hdr, 'UTC') + (readkey3(hdr, 'exptime') / 2)) / 3600
        _date = readkey3(hdr, 'date-obs')
        _date = _date[0:4] + '-' + _date[4:6] + '-' + _date[6:8]
        _RA = readkey3(hdr, 'RA') / 15
        _DEC = readkey3(hdr, 'DEC')
        f = file('airmass.txt', 'w')
        f.write('mst = mst ("' + str(_date) + '",' + str(_UT) + ', obsdb ("' + str(_observatory) + '", "longitude"))\n')
        f.write(
            'air = airmass (' + str(_RA) + ',' + str(_DEC) + ',mst, obsdb ("' + str(_observatory) + '", "latitude"))\n')
        f.write('print(air)\n')
        f.close()
        _air = iraf.astcalc(image=img, command="airmass.txt", Stdout=1)[0]
        try:
            _air = float(_air)
        except:
            _air = 999
        delete('airmass.txt')
        if overwrite and _air < 99.:
            floyds.util.updateheader(img, 0, {'AIRMASS': [_air, 'mean airmass computed with astcalc']})
    else:
        _air = ''
    return _air
Пример #3
0
def clean_image(img, cleanimg):
    import floyds
    from floyds.util import readkey3, readhdr, delete

    array, header = floyds.cosmics.fromfits(img, verbose=False)
    import warnings

    def fxn():
        warnings.warn(" ", DeprecationWarning)

    original_filters = warnings.filters[:]
    # Ignore warnings.
    warnings.simplefilter("ignore")
    try:
        c = floyds.cosmics.cosmicsimage(array, gain=readkey3(header, 'gain'), readnoise=readkey3(header, 'ron'),
                                        sigclip=5.0, sigfrac=0.3, objlim=5.0, verbose=False)
        c.run(maxiter=4, verbose=False)
        fxn()
    finally:
        warnings.filters = original_filters

    if not cleanimg:
        delete(img)
        cleanimg = img
    floyds.cosmics.tofits(cleanimg, c.cleanarray, header, verbose=False)
    return cleanimg
Пример #4
0
def airmass(img, overwrite=True, _observatory='lasilla'):
    import floyds
    from floyds.util import readhdr, readkey3, delete
    from pyraf import iraf

    iraf.astutil(_doprint=0)
    hdr = readhdr(img)
    if readkey3(hdr, 'UTC'):
        _UT = (readkey3(hdr, 'UTC') + (readkey3(hdr, 'exptime') / 2)) / 3600
        _date = readkey3(hdr, 'date-obs')
        _date = _date[0:4] + '-' + _date[4:6] + '-' + _date[6:8]
        _RA = readkey3(hdr, 'RA') / 15
        _DEC = readkey3(hdr, 'DEC')
        f = file('airmass.txt', 'w')
        f.write('mst = mst ("' + str(_date) + '",' + str(_UT) + ', obsdb ("' + str(_observatory) + '", "longitude"))\n')
        f.write(
            'air = airmass (' + str(_RA) + ',' + str(_DEC) + ',mst, obsdb ("' + str(_observatory) + '", "latitude"))\n')
        f.write('print(air)\n')
        f.close()
        _air = iraf.astcalc(image=img, command="airmass.txt", Stdout=1)[0]
        try:
            _air = float(_air)
        except:
            _air = 999
        delete('airmass.txt')
        if overwrite and _air < 99.:
            floyds.util.updateheader(img, 0, {'AIRMASS': [_air, 'mean airmass computed with astcalc']})
    else:
        _air = ''
    return _air
Пример #5
0
def archivingtar(outputlist, nametar):
    import os, string, re
    from floyds.util import delete

    print '### making a tar with pre-reduced frames ........ please wait'
    stringa = ' '.join(outputlist)
    delete(nametar)
    os.system('tar -zcvf ' + nametar + ' ' + stringa)
    print '### tar file: ' + nametar + '\n'
Пример #6
0
def archivingtar(outputlist, nametar):
    import os, string, re
    from floyds.util import delete

    print '### making a tar with pre-reduced frames ........ please wait'
    stringa = ' '.join(outputlist)
    delete(nametar)
    os.system('tar -zcvf ' + nametar + ' ' + stringa)
    print '### tar file: ' + nametar + '\n'
Пример #7
0
def archivingtar(outputlist, nametar):
    import os, string, re
    from floyds.util import delete

    print '\n### making a tar with pre-reduced frames ........ please wait'
    stringa = ''
    for img in outputlist:   stringa = stringa + img + ' '
    #   stringa=stringa+
    #   delete(re.sub('raw.list','tar.gz',rawfile))
    delete(nametar)
    print stringa
    os.system('tar -zcf ' + nametar + ' ' + stringa)
    print '\n### tar file: ' + nametar
Пример #8
0
def archivingtar(outputlist, nametar):
    import os, string, re
    from floyds.util import delete

    print '\n### making a tar with pre-reduced frames ........ please wait'
    stringa = ''
    for img in outputlist:   stringa = stringa + img + ' '
    #   stringa=stringa+
    #   delete(re.sub('raw.list','tar.gz',rawfile))
    delete(nametar)
    print stringa
    os.system('tar -zcf ' + nametar + ' ' + stringa)
    print '\n### tar file: ' + nametar
Пример #9
0
def lacos(_input0,
          output='clean.fits',
          outmask='mask.fits',
          gain=1.3,
          readn=9,
          xorder=9,
          yorder=9,
          sigclip=4.5,
          sigfrac=0.5,
          objlim=1,
          verbose=True,
          interactive=False):
    import floyds
    from floyds.util import delete
    from pyraf import iraf
    import numpy as np

    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits',\
                                                     'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits',\
                                                  'starreject.fits'
    inputmask = 'inputmask.fits'
    # set some parameters in standard IRAF tasks
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # create Laplacian kernel
    # laplkernel = np.array([[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]])
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    delete(galaxy)
    delete(skymod)
    delete(oldoutput)

    if not output:
        output = _input0
    else:
        delete(output)
        iraf.imcopy(_input0, output, verbose='no')

    delete('_xxx.fits,_yyy.fits')
    iraf.imcopy(_input0 + '[*,10:80]', '_xxx.fits', verbose='no')
    _input = '_xxx.fits'

    arrayinput, headerinput = floyds.cosmics.fromfits(_input, verbose=False)
    floyds.cosmics.tofits(outmask,
                          np.float32(arrayinput - arrayinput),
                          headerinput,
                          verbose=False)

    # subtract object spectra if desired
    #    iraf.fit1d(_input,galaxy,"fit",axis=2,order=5,func="leg",low=4.,
    #            high=4.,nav=1,inter='yes',sample="*",niter=3,grow=0,cursor="")
    #    iraf.imarith(_input,"-",galaxy,oldoutput)
    #    iraf.display(oldoutput,1,fill='yes') #######
    #Subtract sky lines
    #    iraf.fit1d(oldoutput,skymod,"fit",axis=2,order=5,func="leg",low=4.,high=4.,
    #            inter='no',sample="*",nav=1,niter=3,grow=0,cursor="")
    #    iraf.imarith(oldoutput,"-",skymod,oldoutput)
    #    iraf.display(oldoutput,2,fill='yes')  #####
    iraf.imcopy(_input, oldoutput)
    arrayoldoutput, headeroldoutput = floyds.cosmics.fromfits(oldoutput,
                                                              verbose=False)
    # add object spectra to sky model
    #    iraf.imarith(skymod,"+",galaxy,skymod)
    delete(med5)
    # add median of residuals to sky model
    iraf.median(oldoutput,
                med5,
                5,
                5,
                zlor='INDEF',
                zhir='INDEF',
                verbose='no')
    #    m5 = ndimage.filters.median_filter(_inputarray, size=5, mode='mirror')
    #    iraf.imarith(skymod,"+",med5,med5)
    # take second-order derivative (Laplacian) of input image
    # kernel is convolved with subsampled image, in order to remove negative
    # pattern around high pixels
    delete(blk)
    delete(lapla)
    iraf.blkrep(oldoutput, blk, 2, 2)
    iraf.convolve(blk, lapla, '_kernel')
    iraf.imreplace(lapla, 0, upper=0, lower='INDEF')
    delete(deriv2)
    delete(noise)
    iraf.blkavg(lapla, deriv2, 2, 2, option="average")
    # create noise model
    iraf.imutil.imexpr(expr='sqrt(a*' + str(gain) + '+' + str(readn) +
                       '**2)/' + str(gain),
                       a=med5,
                       output=noise,
                       verbose='no')
    iraf.imreplace(med5, 0.00001, upper=0, lower='INDEF')
    # divide Laplacian by noise model
    delete(sigmap)
    iraf.imutil.imexpr(expr='(a/b)/2',
                       a=deriv2,
                       b=noise,
                       output=sigmap,
                       verbose='no')
    # removal of large structure (bright, extended objects)
    delete(med5)
    iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imarith(sigmap, "-", med5, sigmap)
    # find all candidate cosmic rays
    # this selection includes sharp features such as stars and HII regions

    arraysigmap, headersigmap = floyds.cosmics.fromfits(sigmap, verbose=False)
    arrayf = np.where(arraysigmap < sigclip, 0, arraysigmap)
    arrayf = np.where(arrayf > 0.1, 1, arrayf)
    floyds.cosmics.tofits(firstsel,
                          np.float32(arrayf),
                          headersigmap,
                          verbose=False)

    # compare candidate CRs to median filtered image
    # this step rejects bright, compact sources from the initial CR list
    # subtract background and smooth component of objects
    delete(med3)
    iraf.median(oldoutput, med3, 3, 3, zlo='INDEF', zhi='INDEF', verbose='no')
    delete(med7)
    delete('_' + med3)
    iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imutil.imexpr(expr='(a-b)/c',
                       a=med3,
                       b=med7,
                       c=noise,
                       output='_' + med3,
                       verbose='no')
    iraf.imreplace('_' + med3, 0.01, upper=0.01, lower='INDEF')
    # compare CR flux to object flux
    delete(starreject)
    iraf.imutil.imexpr(expr='a+b+c',
                       a=firstsel,
                       b=sigmap,
                       c="_" + med3,
                       output=starreject,
                       verbose='no')
    # discard if CR flux <= objlim * object flux
    iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF')
    iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF')
    iraf.imarith(firstsel, "*", starreject, firstsel)

    # grow CRs by one pixel and check in original sigma map
    arrayfirst, headerfirst = floyds.cosmics.fromfits(firstsel, verbose=False)
    arraygfirst = floyds.cosmics.my_convolve_with_FFT2(arrayfirst, gkernel)

    arraygfirst = np.where(arraygfirst > 0.5, 1, arraygfirst)
    arraygfirst = arraygfirst * arraysigmap
    arraygfirst = np.where(arraygfirst < sigclip, 0, arraygfirst)
    arraygfirst = np.where(arraygfirst > 0.1, 1, arraygfirst)

    # grow CRs by one pixel and lower detection limit
    sigcliplow = sigfrac * sigclip
    # Finding neighbouring pixels affected by cosmic rays
    arrayfinal = floyds.cosmics.my_convolve_with_FFT2(arraygfirst, gkernel)
    arrayfinal = np.where(arrayfinal > 0.5, 1, arrayfinal)
    arrayfinal = arrayfinal * arraysigmap
    arrayfinal = np.where(arrayfinal < sigcliplow, 0, arrayfinal)
    arrayfinal = np.where(arrayfinal > 0.1, 1, arrayfinal)

    # determine number of CRs found in this iteration
    arraygfirst = (1 - (arrayfinal - arrayfinal)) * arrayfinal
    npix = [str(int(np.size(np.where(arraygfirst > 0.5)) / 2.))]
    # create cleaned output image; use 3x3 median with CRs excluded
    arrayoutmask = np.where(arrayfinal > 1, 1, arrayfinal)
    floyds.cosmics.tofits(outmask,
                          np.float32(arrayoutmask),
                          headerfirst,
                          verbose=False)
    delete(inputmask)
    arrayinputmask = (1 - (10000 * arrayoutmask)) * arrayoldoutput
    floyds.cosmics.tofits(inputmask,
                          np.float32(arrayinputmask),
                          headerfirst,
                          verbose=False)
    delete(med5)
    iraf.median(inputmask,
                med5,
                5,
                5,
                zloreject=-9999,
                zhi='INDEF',
                verbose='no')
    iraf.imarith(outmask, "*", med5, med5)
    delete('_yyy.fits')
    iraf.imutil.imexpr(expr='(1-a)*b+c',
                       a=outmask,
                       b=oldoutput,
                       c=med5,
                       output='_yyy.fits',
                       verbose='no')
    # add sky and object spectra back in
    #iraf.imarith('_yyy.fits',"+",skymod,'_yyy.fits')
    # cleanup and get ready for next iteration
    if npix == 0: stop = yes
    # delete temp files
    iraf.imcopy('_yyy.fits', output + '[*,10:80]', verbose='no')
    delete(blk + "," + lapla + "," + deriv2 + "," + med5)
    delete(med3 + "," + med7 + "," + noise + "," + sigmap)
    delete(firstsel + "," + starreject)
    delete(finalsel + "," + inputmask)
    delete(oldoutput + "," + skymod + "," + galaxy)
    delete("_" + med3 + ",_" + sigmap)
    delete('_kernel' + "," + '_gkernel')
    delete(outmask)
    delete('_xxx.fits,_yyy.fits')
Пример #10
0
def lacos_im(_input,
             _output='clean.fits',
             outmask='mask.fits',
             gain=1.3,
             readn=9,
             xorder=9,
             yorder=9,
             sigclip=4.5,
             sigfrac=0.5,
             objlim=1,
             skyval=0,
             niter=2,
             verbose=True,
             interactive=False):
    import floyds
    from floyds.util import delete
    import sys, re, os, string
    from pyraf import iraf
    import numpy as np

    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # make temporary files
    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits',\
                                                     'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits',\
                                                  'starreject.fits'
    inputmask, gfirstsel = 'inputmask.fits', 'gfirstsel.fits'
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    # initialize loop
    usegain = gain
    i = 1
    stop = 'no'
    previous = 0
    if not _output: _output = _input

    arrayinput, headerinput = floyds.cosmics.fromfits(_input, verbose=False)
    floyds.cosmics.tofits(outmask,
                          np.float32(arrayinput - arrayinput),
                          headerinput,
                          verbose=False)

    delete(oldoutput)
    if skyval > 0:
        arrayoldoutput = arrayinput + skyval
    else:
        arrayoldoutput = arrayinput
    floyds.cosmics.tofits(oldoutput,
                          np.float32(arrayoldoutput),
                          headerinput,
                          verbose=False)
    # start iterations
    while stop == 'no':
        # take second-order derivative (Laplacian) of input image
        # kernel is convolved with subsampled image, in order to remove negative
        # pattern around high pixels
        delete(blk)
        delete(lapla)
        delete(deriv2)
        iraf.blkrep(oldoutput, blk, 2, 2)
        iraf.convolve(blk, lapla, '_kernel')
        iraf.imreplace(lapla, 0, upper=0, lower='INDEF', radius=0)
        iraf.blkavg(lapla, deriv2, 2, 2, option="average")
        delete(med5)
        # create model of background flux - 5x5 box should exclude all CRs
        iraf.median(oldoutput,
                    med5,
                    5,
                    5,
                    zlo='INDEF',
                    zhi='INDEF',
                    verbose='no')
        iraf.imreplace(med5, 0.0001, upper=0, lower='INDEF', radius=0)
        # create noise model
        delete(noise)
        iraf.imutil.imexpr(expr='sqrt(a*' + str(usegain) + '+' + str(readn) +
                           '**2)/' + str(usegain),
                           a=med5,
                           output=noise,
                           verbose='no')
        # divide Laplacian by noise model
        delete(sigmap)
        iraf.imarith(deriv2, "/", noise, sigmap)
        # Laplacian of blkreplicated image counts edges twice:
        iraf.imarith(sigmap, "/", 2., sigmap)
        # removal of large structure (bright, extended objects)
        delete(med5)
        iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
        arraysigmap, headersigmap = floyds.cosmics.fromfits(sigmap,
                                                            verbose=False)
        arraymed5, headermed5 = floyds.cosmics.fromfits(med5, verbose=False)
        arraysigmap = arraysigmap - arraymed5
        iraf.imarith(sigmap, "-", med5, sigmap)
        # find all candidate cosmic rays
        # this selection includes sharp features such as stars and HII regions

        delete(firstsel)
        iraf.imcopy(sigmap, firstsel, verbose='no')
        iraf.imreplace(firstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(firstsel, 1, lower=0.1, upper='INDEF', radius=0)
        #		arraygfirst=arraysigmap
        #		arraygfirst = np.where(arraygfirst<sigclip,0,arraygfirst)
        #		arraygfirst = np.where(arraygfirst>0.1,1,arraygfirst)

        # compare candidate CRs to median filtered image
        # this step rejects bright, compact sources from the initial CR list
        # subtract background and smooth component of objects
        delete(med3)
        delete(med7)
        iraf.median(oldoutput,
                    med3,
                    3,
                    3,
                    zlo='INDEF',
                    zhi='INDEF',
                    verbose='no')
        iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imarith(med3, "-", med7, med3)
        iraf.imarith(med3, "/", noise, med3)
        iraf.imreplace(med3, 0.01, upper=0.01, lower='INDEF', radius=0)
        # compare CR flux to object flux
        delete(starreject)
        iraf.imutil.imexpr(expr="(a*b)/c",
                           a=firstsel,
                           b=sigmap,
                           c=med3,
                           output=starreject,
                           verbose='no')
        # discard if CR flux <= objlim * object flux
        iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF', radius=0)
        iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(firstsel, "*", starreject, firstsel)
        # grow CRs by one pixel and check in original sigma map
        delete(gfirstsel)
        iraf.convolve(firstsel, gfirstsel, '_gkernel')
        iraf.imreplace(gfirstsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(gfirstsel, "*", sigmap, gfirstsel)
        iraf.imreplace(gfirstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(gfirstsel, 1, lower=0.1, upper='INDEF', radius=0)
        # grow CRs by one pixel and lower detection limit
        sigcliplow = sigfrac * sigclip
        delete(finalsel)
        iraf.convolve(gfirstsel, finalsel, '_gkernel')
        iraf.imreplace(finalsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(finalsel, "*", sigmap, finalsel)
        iraf.imreplace(finalsel, 0, upper=sigcliplow, lower='INDEF', radius=0)
        iraf.imreplace(finalsel, 1, lower=0.1, upper='INDEF', radius=0)
        # determine number of CRs found in this iteration
        delete(gfirstsel)
        iraf.imutil.imexpr(expr="(1-b)*a",
                           a=outmask,
                           b=finalsel,
                           output=gfirstsel,
                           verbose='no')

        npix = iraf.imstat(gfirstsel,
                           fields="npix",
                           lower=0.5,
                           upper='INDEF',
                           Stdout=1)
        # create cleaned output image; use 3x3 median with CRs excluded
        delete(med5)
        iraf.imarith(outmask, "+", finalsel, outmask)
        iraf.imreplace(outmask, 1, lower=1, upper='INDEF', radius=0)

        delete(inputmask)
        iraf.imutil.imexpr(expr="(1-10000*a)",
                           a=outmask,
                           output=inputmask,
                           verbose='no')
        iraf.imarith(oldoutput, "*", inputmask, inputmask)
        delete(med5)
        iraf.median(inputmask,
                    med5,
                    5,
                    5,
                    zloreject=-9999,
                    zhi='INDEF',
                    verbose='no')
        iraf.imarith(outmask, "*", med5, med5)
        if i > 1: delete(_output)

        delete(_output)
        iraf.imutil.imexpr(expr="(1.-b)*a+c",
                           a=oldoutput,
                           b=outmask,
                           c=med5,
                           output=_output,
                           verbose='no')

        # cleanup and get ready for next iteration
        delete(oldoutput)
        iraf.imcopy(_output, oldoutput, verbose='no')

        if npix == 0: stop = 'yes'
        i = i + 1
        if i > niter: stop = 'yes'
        # delete temp files
        delete(blk + "," + lapla + "," + deriv2 + "," + med5)
        delete(med3 + "," + med7 + "," + noise + "," + sigmap)
        delete(firstsel + "," + starreject + "," + gfirstsel)
        delete(finalsel + "," + inputmask)

    if skyval > 0: iraf.imarith(_output, "-", skyval, _output)
    delete('_kernel' + "," + '_gkernel')
    delete(oldoutput)
Пример #11
0
def lacos(_input0, output='clean.fits', outmask='mask.fits', gain=1.3, readn=9, xorder=9, yorder=9, sigclip=4.5,
          sigfrac=0.5, objlim=1, verbose=True, interactive=False):
    import floyds
    from floyds.util import delete
    from pyraf import iraf
    import numpy as np

    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits',\
                                                     'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits',\
                                                  'starreject.fits'
    inputmask = 'inputmask.fits'
    # set some parameters in standard IRAF tasks
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # create Laplacian kernel
    # laplkernel = np.array([[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]])
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    delete(galaxy)
    delete(skymod)
    delete(oldoutput)

    if not output:
        output = _input0
    else:
        delete(output)
        iraf.imcopy(_input0, output, verbose='no')

    delete('_xxx.fits,_yyy.fits')
    iraf.imcopy(_input0 + '[*,10:80]', '_xxx.fits', verbose='no')
    _input = '_xxx.fits'

    arrayinput, headerinput = floyds.cosmics.fromfits(_input, verbose=False)
    floyds.cosmics.tofits(outmask, np.float32(arrayinput - arrayinput), headerinput, verbose=False)

    # subtract object spectra if desired
    #    iraf.fit1d(_input,galaxy,"fit",axis=2,order=5,func="leg",low=4.,
    #            high=4.,nav=1,inter='yes',sample="*",niter=3,grow=0,cursor="")
    #    iraf.imarith(_input,"-",galaxy,oldoutput)
    #    iraf.display(oldoutput,1,fill='yes') #######
    #Subtract sky lines
    #    iraf.fit1d(oldoutput,skymod,"fit",axis=2,order=5,func="leg",low=4.,high=4.,
    #            inter='no',sample="*",nav=1,niter=3,grow=0,cursor="")
    #    iraf.imarith(oldoutput,"-",skymod,oldoutput)
    #    iraf.display(oldoutput,2,fill='yes')  #####
    iraf.imcopy(_input, oldoutput)
    arrayoldoutput, headeroldoutput = floyds.cosmics.fromfits(oldoutput, verbose=False)
    # add object spectra to sky model
    #    iraf.imarith(skymod,"+",galaxy,skymod)
    delete(med5)
    # add median of residuals to sky model
    iraf.median(oldoutput, med5, 5, 5, zlor='INDEF', zhir='INDEF', verbose='no')
    #    m5 = ndimage.filters.median_filter(_inputarray, size=5, mode='mirror')
    #    iraf.imarith(skymod,"+",med5,med5)
    # take second-order derivative (Laplacian) of input image
    # kernel is convolved with subsampled image, in order to remove negative
    # pattern around high pixels
    delete(blk)
    delete(lapla)
    iraf.blkrep(oldoutput, blk, 2, 2)
    iraf.convolve(blk, lapla, '_kernel')
    iraf.imreplace(lapla, 0, upper=0, lower='INDEF')
    delete(deriv2)
    delete(noise)
    iraf.blkavg(lapla, deriv2, 2, 2, option="average")
    # create noise model
    iraf.imutil.imexpr(expr='sqrt(a*' + str(gain) + '+' + str(readn) + '**2)/' + str(gain), a=med5, output=noise,
                       verbose='no')
    iraf.imreplace(med5, 0.00001, upper=0, lower='INDEF')
    # divide Laplacian by noise model
    delete(sigmap)
    iraf.imutil.imexpr(expr='(a/b)/2', a=deriv2, b=noise, output=sigmap, verbose='no')
    # removal of large structure (bright, extended objects)
    delete(med5)
    iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imarith(sigmap, "-", med5, sigmap)
    # find all candidate cosmic rays
    # this selection includes sharp features such as stars and HII regions

    arraysigmap, headersigmap = floyds.cosmics.fromfits(sigmap, verbose=False)
    arrayf = np.where(arraysigmap < sigclip, 0, arraysigmap)
    arrayf = np.where(arrayf > 0.1, 1, arrayf)
    floyds.cosmics.tofits(firstsel, np.float32(arrayf), headersigmap, verbose=False)

    # compare candidate CRs to median filtered image
    # this step rejects bright, compact sources from the initial CR list
    # subtract background and smooth component of objects
    delete(med3)
    iraf.median(oldoutput, med3, 3, 3, zlo='INDEF', zhi='INDEF', verbose='no')
    delete(med7)
    delete('_' + med3)
    iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imutil.imexpr(expr='(a-b)/c', a=med3, b=med7, c=noise, output='_' + med3, verbose='no')
    iraf.imreplace('_' + med3, 0.01, upper=0.01, lower='INDEF')
    # compare CR flux to object flux
    delete(starreject)
    iraf.imutil.imexpr(expr='a+b+c', a=firstsel, b=sigmap, c="_" + med3, output=starreject, verbose='no')
    # discard if CR flux <= objlim * object flux
    iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF')
    iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF')
    iraf.imarith(firstsel, "*", starreject, firstsel)

    # grow CRs by one pixel and check in original sigma map
    arrayfirst, headerfirst = floyds.cosmics.fromfits(firstsel, verbose=False)
    arraygfirst = floyds.cosmics.my_convolve_with_FFT2(arrayfirst, gkernel)

    arraygfirst = np.where(arraygfirst > 0.5, 1, arraygfirst)
    arraygfirst = arraygfirst * arraysigmap
    arraygfirst = np.where(arraygfirst < sigclip, 0, arraygfirst)
    arraygfirst = np.where(arraygfirst > 0.1, 1, arraygfirst)

    # grow CRs by one pixel and lower detection limit
    sigcliplow = sigfrac * sigclip
    # Finding neighbouring pixels affected by cosmic rays
    arrayfinal = floyds.cosmics.my_convolve_with_FFT2(arraygfirst, gkernel)
    arrayfinal = np.where(arrayfinal > 0.5, 1, arrayfinal)
    arrayfinal = arrayfinal * arraysigmap
    arrayfinal = np.where(arrayfinal < sigcliplow, 0, arrayfinal)
    arrayfinal = np.where(arrayfinal > 0.1, 1, arrayfinal)

    # determine number of CRs found in this iteration
    arraygfirst = (1 - (arrayfinal - arrayfinal)) * arrayfinal
    npix = [str(int(np.size(np.where(arraygfirst > 0.5)) / 2.))]
    # create cleaned output image; use 3x3 median with CRs excluded
    arrayoutmask = np.where(arrayfinal > 1, 1, arrayfinal)
    floyds.cosmics.tofits(outmask, np.float32(arrayoutmask), headerfirst, verbose=False)
    delete(inputmask)
    arrayinputmask = (1 - (10000 * arrayoutmask)) * arrayoldoutput
    floyds.cosmics.tofits(inputmask, np.float32(arrayinputmask), headerfirst, verbose=False)
    delete(med5)
    iraf.median(inputmask, med5, 5, 5, zloreject=-9999, zhi='INDEF', verbose='no')
    iraf.imarith(outmask, "*", med5, med5)
    delete('_yyy.fits')
    iraf.imutil.imexpr(expr='(1-a)*b+c', a=outmask, b=oldoutput, c=med5, output='_yyy.fits', verbose='no')
    # add sky and object spectra back in
    #iraf.imarith('_yyy.fits',"+",skymod,'_yyy.fits')
    # cleanup and get ready for next iteration
    if npix == 0: stop = yes
    # delete temp files
    iraf.imcopy('_yyy.fits', output + '[*,10:80]', verbose='no')
    delete(blk + "," + lapla + "," + deriv2 + "," + med5)
    delete(med3 + "," + med7 + "," + noise + "," + sigmap)
    delete(firstsel + "," + starreject)
    delete(finalsel + "," + inputmask)
    delete(oldoutput + "," + skymod + "," + galaxy)
    delete("_" + med3 + ",_" + sigmap)
    delete('_kernel' + "," + '_gkernel')
    delete(outmask)
    delete('_xxx.fits,_yyy.fits')
Пример #12
0
def lacos_im(_input, _output='clean.fits', outmask='mask.fits', gain=1.3, readn=9, xorder=9, yorder=9, sigclip=4.5,
             sigfrac=0.5, objlim=1, skyval=0, niter=2, verbose=True, interactive=False):
    import floyds
    from floyds.util import delete
    import sys, re, os, string
    from pyraf import iraf
    import numpy as np

    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # make temporary files
    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits',\
                                                     'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits',\
                                                  'starreject.fits'
    inputmask, gfirstsel = 'inputmask.fits', 'gfirstsel.fits'
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    # initialize loop
    usegain = gain
    i = 1
    stop = 'no'
    previous = 0
    if not _output: _output = _input

    arrayinput, headerinput = floyds.cosmics.fromfits(_input, verbose=False)
    floyds.cosmics.tofits(outmask, np.float32(arrayinput - arrayinput), headerinput, verbose=False)

    delete(oldoutput)
    if skyval > 0:
        arrayoldoutput = arrayinput + skyval
    else:
        arrayoldoutput = arrayinput
    floyds.cosmics.tofits(oldoutput, np.float32(arrayoldoutput), headerinput, verbose=False)
    # start iterations
    while stop == 'no':
        # take second-order derivative (Laplacian) of input image
        # kernel is convolved with subsampled image, in order to remove negative
        # pattern around high pixels
        delete(blk)
        delete(lapla)
        delete(deriv2)
        iraf.blkrep(oldoutput, blk, 2, 2)
        iraf.convolve(blk, lapla, '_kernel')
        iraf.imreplace(lapla, 0, upper=0, lower='INDEF', radius=0)
        iraf.blkavg(lapla, deriv2, 2, 2, option="average")
        delete(med5)
        # create model of background flux - 5x5 box should exclude all CRs
        iraf.median(oldoutput, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imreplace(med5, 0.0001, upper=0, lower='INDEF', radius=0)
        # create noise model
        delete(noise)
        iraf.imutil.imexpr(expr='sqrt(a*' + str(usegain) + '+' + str(readn) + '**2)/' + str(usegain), a=med5,
                           output=noise, verbose='no')
        # divide Laplacian by noise model
        delete(sigmap)
        iraf.imarith(deriv2, "/", noise, sigmap)
        # Laplacian of blkreplicated image counts edges twice:
        iraf.imarith(sigmap, "/", 2., sigmap)
        # removal of large structure (bright, extended objects)
        delete(med5)
        iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
        arraysigmap, headersigmap = floyds.cosmics.fromfits(sigmap, verbose=False)
        arraymed5, headermed5 = floyds.cosmics.fromfits(med5, verbose=False)
        arraysigmap = arraysigmap - arraymed5
        iraf.imarith(sigmap, "-", med5, sigmap)
        # find all candidate cosmic rays
        # this selection includes sharp features such as stars and HII regions

        delete(firstsel)
        iraf.imcopy(sigmap, firstsel, verbose='no')
        iraf.imreplace(firstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(firstsel, 1, lower=0.1, upper='INDEF', radius=0)
        #		arraygfirst=arraysigmap
        #		arraygfirst = np.where(arraygfirst<sigclip,0,arraygfirst)
        #		arraygfirst = np.where(arraygfirst>0.1,1,arraygfirst)

        # compare candidate CRs to median filtered image
        # this step rejects bright, compact sources from the initial CR list
        # subtract background and smooth component of objects
        delete(med3)
        delete(med7)
        iraf.median(oldoutput, med3, 3, 3, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imarith(med3, "-", med7, med3)
        iraf.imarith(med3, "/", noise, med3)
        iraf.imreplace(med3, 0.01, upper=0.01, lower='INDEF', radius=0)
        # compare CR flux to object flux
        delete(starreject)
        iraf.imutil.imexpr(expr="(a*b)/c", a=firstsel, b=sigmap, c=med3, output=starreject, verbose='no')
        # discard if CR flux <= objlim * object flux
        iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF', radius=0)
        iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(firstsel, "*", starreject, firstsel)
        # grow CRs by one pixel and check in original sigma map
        delete(gfirstsel)
        iraf.convolve(firstsel, gfirstsel, '_gkernel')
        iraf.imreplace(gfirstsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(gfirstsel, "*", sigmap, gfirstsel)
        iraf.imreplace(gfirstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(gfirstsel, 1, lower=0.1, upper='INDEF', radius=0)
        # grow CRs by one pixel and lower detection limit
        sigcliplow = sigfrac * sigclip
        delete(finalsel)
        iraf.convolve(gfirstsel, finalsel, '_gkernel')
        iraf.imreplace(finalsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(finalsel, "*", sigmap, finalsel)
        iraf.imreplace(finalsel, 0, upper=sigcliplow, lower='INDEF', radius=0)
        iraf.imreplace(finalsel, 1, lower=0.1, upper='INDEF', radius=0)
        # determine number of CRs found in this iteration
        delete(gfirstsel)
        iraf.imutil.imexpr(expr="(1-b)*a", a=outmask, b=finalsel, output=gfirstsel, verbose='no')

        npix = iraf.imstat(gfirstsel, fields="npix", lower=0.5, upper='INDEF', Stdout=1)
        # create cleaned output image; use 3x3 median with CRs excluded
        delete(med5)
        iraf.imarith(outmask, "+", finalsel, outmask)
        iraf.imreplace(outmask, 1, lower=1, upper='INDEF', radius=0)

        delete(inputmask)
        iraf.imutil.imexpr(expr="(1-10000*a)", a=outmask, output=inputmask, verbose='no')
        iraf.imarith(oldoutput, "*", inputmask, inputmask)
        delete(med5)
        iraf.median(inputmask, med5, 5, 5, zloreject=-9999, zhi='INDEF', verbose='no')
        iraf.imarith(outmask, "*", med5, med5)
        if i > 1: delete(_output)

        delete(_output)
        iraf.imutil.imexpr(expr="(1.-b)*a+c", a=oldoutput, b=outmask, c=med5, output=_output, verbose='no')

        # cleanup and get ready for next iteration
        delete(oldoutput)
        iraf.imcopy(_output, oldoutput, verbose='no')

        if npix == 0: stop = 'yes'
        i = i + 1
        if i > niter: stop = 'yes'
        # delete temp files
        delete(blk + "," + lapla + "," + deriv2 + "," + med5)
        delete(med3 + "," + med7 + "," + noise + "," + sigmap)
        delete(firstsel + "," + starreject + "," + gfirstsel)
        delete(finalsel + "," + inputmask)

    if skyval > 0:   iraf.imarith(_output, "-", skyval, _output)
    delete('_kernel' + "," + '_gkernel')
    delete(oldoutput)