def gen_basis(tessellation, gradient): file1 = '%dvectors.txt' % tessellation file2 = '%dvectors.txt' % gradient data, dsize = gen_1fib(file1, file2) filename = 's_t%d_g%d_f1.flt' % (tessellation, gradient) flt_utils.write_flt_file(filename, data, dsize) return data, dsize, filename
def gen_basis(tessellation,gradient): file1 = '%dvectors.txt'%tessellation file2 = '%dvectors.txt'%gradient data, dsize = gen_1fib(file1, file2) filename = 's_t%d_g%d_f1.flt'%(tessellation,gradient) flt_utils.write_flt_file(filename,data,dsize) return data,dsize,filename
def add_rician_noise_to_file(filename, stds, shuffle=False): #stds = numpy.arange(0.01,0.1,0.01) flt_filename = filename + '.flt' dsize, data = flt_utils.read_flt_file(flt_filename) inds = numpy.arange(data.shape[1]) for std in stds: s_noise = add_rician_noise(data, std) k, n = s_noise.shape if shuffle: numpy.random.shuffle(inds) output_filename = '%s_sd%03d.flt' % (filename, std * 100) txt_filename = '%s_sd%03d.txt' % (filename, std * 100) flt_utils.write_flt_file(output_filename, s_noise[:, inds], dsize) f = open(txt_filename, 'w') f.write('\n'.join([str(ind) for ind in inds])) f.close()
def add_rician_noise_to_file(filename, stds, shuffle = False): #stds = numpy.arange(0.01,0.1,0.01) flt_filename = filename + '.flt' dsize, data = flt_utils.read_flt_file(flt_filename) inds = numpy.arange(data.shape[1]) for std in stds: s_noise = add_rician_noise(data, std) k,n = s_noise.shape if shuffle: numpy.random.shuffle(inds) output_filename = '%s_sd%03d.flt'%(filename,std*100) txt_filename = '%s_sd%03d.txt'%(filename,std*100) flt_utils.write_flt_file(output_filename,s_noise[:,inds],dsize) f = open(txt_filename,'w') f.write('\n'.join([str(ind) for ind in inds])) f.close()