Пример #1
0
    def get_lines(self):
        x1 = (0.61809734343982814, -0.013406307631868021, -0.0035917469609576813)
        x2 = (1.198826951196984, -0.012485555989418704, 0.0025602971809217849)
        line_mark = geom.line_from_points(geom.ThreeTuple(x1), geom.ThreeTuple(x2))
        #line_mark = geom.line_from_HZline( (0.02439605071482559, 0.051420313894467287, -0.99564385219908413, -0.00097158319016768459, 0.015447764310623923, -0.072211676414489459))
        #(-0.061248834007043639, -0.25331384274265706, 0.92406568281060819, 0.0036304349314720606, -0.053126804348089779, 0.27449527110946625))

#(0.0097110036703961945, 0.071801811107512326, -0.98489513490720026, 0.00048467528993275467, 0.027587746154489213, -0.15482393522159865))
#(-0.072175447568079532, -0.31684664370365356, 0.86817678663756903, 0.0048959408494628444, -0.070490367875258558, 0.36834102959859433))
#(0.026432522291979302, 0.066719950163430089, -0.98930078556948686, -0.0017052044659353833, 0.024116927663042458, -0.12469639836376363))
#(0.036051887242803483, 0.1225934342601759, -0.97241823143838102, -0.0025815311891907609, 0.035919256583691377, -0.19177340058510137))
        line_clean = geom.line_from_HZline( (-0.27936512712372191, 0.04624199569732089, -0.9586296181568541, -0.0080073601565274575, 0.0023435304010169695, 0.027864831277130742))

        x1=(0.49949904826195857, -0.012373271634116311, 0.32286252608243299)
        x2=(0.38901860101731867, -0.01294145950243236, 0.32642509461777808)
        top_mark_line = geom.line_from_points(geom.ThreeTuple(x1), geom.ThreeTuple(x2))
        #top_mark_line= geom.line_from_HZline((0.18050156903291037, 0.31868846699973336, -0.73306806601973318, -0.065965871714262242, 0.15803989259450685, -0.54693688052443501))
        #(0.17074976404913067, 0.32855038182801033, -0.67404658417915053, -0.072283972587872641, 0.16975362231152435, -0.61197965820220468))
        #(0.17544381933023984, 0.49024035729704918, -0.56597775796347805, -0.05688098204074131, 0.1552881996760179, -0.61741652451985551))
        top_clean_line = geom.line_from_HZline((-0.26575764351965903, -0.29763801029854864, -0.91692940763466335, -0.0018355385669680962, 0.0018496262007779841, 0.0042615527956441791))

        verts = []
        lines = []
        count = 0
        for line in [line_mark, line_clean, top_mark_line, top_clean_line]:

            this_verts = []
            this_lines = []

            d = line.u
            direction = numpy.array([d[0],d[1],d[2]])
            norm = direction / numpy.sqrt( numpy.sum(direction**2) )
            d = line.closest()
            pt0 = numpy.array([d[0],d[1],d[2]])

            for d in numpy.linspace(-2,2,100):
                this_verts.append( pt0 + d*norm )

            for i in range(len(this_verts)-1):
                this_lines.append( [count+i, count+i+1] )

            count += len(this_verts)

##             print 'this_verts[0]',this_verts[0]
##             print 'this_verts[-1]',this_verts[-1]
##             print

            verts.extend( this_verts )
            lines.extend( this_lines )

        # make homogeneous
        verts = [ numpy.array((v[0], v[1], v[2], 1.0)) for v in verts ]
##         print 'verts\n',
##         for v in verts:
##             print v
##         print 'lines\n',
##         for l in lines:
##             print l

        return verts, lines
Пример #2
0
 def tst_line_closest1(self, geom):
     if geom is fastgeom:
         return  # not implemented
     xaxis = geom.line_from_points(geom.ThreeTuple((0, 0, 0)),
                                   geom.ThreeTuple((1, 0, 0)))
     zline = geom.line_from_points(geom.ThreeTuple((.5, 0, 0)),
                                   geom.ThreeTuple((.5, 0, 1)))
     result = xaxis.get_my_point_closest_to_line(zline)
     eps = 1e-10
     print 'result', result
     assert result.dist_from(geom.ThreeTuple((0.5, 0, 0))) < eps
Пример #3
0
    def tstXX(self, geom, x1, y1, z1, x2):
        pt_a = [x1, y1, z1, 1]
        pt_b = [x2, 5, 6, 1]
        hz_p = reconstruct.pluecker_from_verts(pt_a, pt_b)

        a = geom.ThreeTuple(pt_a[:3])
        b = geom.ThreeTuple(pt_b[:3])
        L = geom.line_from_points(a, b)

        hzL = geom.line_from_HZline(hz_p)

        strL = str(L)
        strhzL = str(hzL)
        assert strL == strhzL
        if 0:
            print("hz_p", hz_p)
            print("correct", L)
            print("test   ", hzL)
            print()
Пример #4
0
def make_montage(h5_filename,
                 cfg_filename=None,
                 ufmf_dir=None,
                 dest_dir=None,
                 save_ogv_movie=False,
                 no_remove=False,
                 max_n_frames=None,
                 start=None,
                 stop=None,
                 movie_fnames=None,
                 movie_cam_ids=None,
                 caminfo_h5_filename=None,
                 colormap=None,
                 kalman_filename=None,
                 candidate_index=0,
                 nth_frame=1,
                 verbose=False,
                 reconstructor=None,
                 **kwargs):
    config = get_config_defaults()
    if cfg_filename is not None:
        loaded_cfg = cherrypy.lib.reprconf.as_dict(cfg_filename)
        for section in loaded_cfg:
            config[section].update(loaded_cfg.get(section, {}))
    else:
        warnings.warn('no configuration file specified -- using defaults')

    orientation_3d_line_length = 0.1

    if (config['what to show']['show_3d_smoothed_position']
            or config['what to show']['show_3d_MLE_position']
            or config['what to show']['show_3d_raw_orientation']
            or config['what to show']['show_3d_raw_chosen_orientation']
            or config['what to show']['show_3d_smoothed_orientation']
            or config['what to show']['show_3d_obj_position_text']):
        if kalman_filename is None:
            raise ValueError('need kalman filename to show requested 3D data')

    if config['what to show']['obj_labels']:
        if kalman_filename is None:
            raise ValueError('need kalman filename to show object labels')

    if kalman_filename is not None:
        if (config['what to show']['show_3d_smoothed_orientation']
                or config['what to show']['show_3d_raw_orientation']
                or config['what to show']['show_3d_raw_chosen_orientation']):
            need_quality_data = True
        else:
            need_quality_data = False

        if need_quality_data:
            # need data about quality of tracking
            data3d, dataqual_3d = load_3d_data(kalman_filename,
                                               start=start,
                                               stop=stop,
                                               require_qual=True,
                                               **kwargs)
        else:
            data3d = load_3d_data(kalman_filename,
                                  start=start,
                                  stop=stop,
                                  require_qual=False,
                                  **kwargs)
            dataqual_3d = None

        if (config['what to show']['show_3d_MLE_position']
                or config['what to show']['show_3d_raw_orientation']):
            if need_quality_data:
                data_raw_3d, dataqual_raw_3d = load_3d_raw_data(
                    kalman_filename, **kwargs)
            else:
                data_raw_3d = load_3d_raw_data(kalman_filename,
                                               require_qual=False,
                                               **kwargs)
                dataqual_raw_3d = None
        else:
            data_raw_3d, dataqual_raw_3d = None, None
        if reconstructor is None:
            R = reconstruct.Reconstructor(kalman_filename)
        else:
            R = reconstruct.Reconstructor(reconstructor)
    else:
        data3d = R = data_raw_3d = None
        dataqual_raw_3d = None
        dataqual_3d = None

    min_ori_qual = config['what to show'][
        'minimum_display_orientation_quality']

    if movie_fnames is None:
        # This works based on UUIDs
        movie_fnames = auto_discover_movies.find_movies(
            h5_filename,
            ufmf_dir=ufmf_dir,
            candidate_index=candidate_index,
            verbose=verbose)
        if verbose:
            print 'autodiscovery: found movie_fnames: %r' % (movie_fnames, )
    else:
        if verbose:
            print 'autodiscovery: movie_fnames specified, not finding movies'

    if len(movie_fnames) == 0:
        if verbose:
            print 'autodiscovery: no FMF files found, looking for ufmfs'
        movie_fnames = auto_discover_ufmfs.find_ufmfs(
            h5_filename,
            ufmf_dir=ufmf_dir,
            careful=True,
            verbose=verbose,
        )
    else:
        if verbose:
            print 'autodiscovery: prefixing directory'
        if ufmf_dir is not None:
            if verbose:
                print 'autodiscovery: prefixing movie names with directory %r' % (
                    ufmf_dir, )
            movie_fnames = [os.path.join(ufmf_dir, f) for f in movie_fnames]

    if len(movie_fnames) == 0:
        raise ValueError('no input movies -- nothing to do')
    elif verbose:
        print 'movie_fnames:', movie_fnames

    if dest_dir is None:
        dest_dir = os.curdir
    else:
        if not os.path.exists(dest_dir):
            os.makedirs(dest_dir)

    # get name of data

    datetime_str = os.path.splitext(os.path.split(h5_filename)[-1])[0]
    if datetime_str.startswith('DATA'):
        datetime_str = datetime_str[4:19]

    workaround_ffmpeg2theora_bug = True

    if caminfo_h5_filename is None:
        caminfo_h5_filename = h5_filename

    if caminfo_h5_filename is not None:
        with open_file_safe(caminfo_h5_filename, mode='r') as h5:
            camn2cam_id, tmp = result_utils.get_caminfo_dicts(h5)
            del tmp
    else:
        camn2cam_id = None

    blank_images = {}

    all_frame_montages = []
    for frame_enum, (frame_dict, frame) in enumerate(
            ufmf_tools.iterate_frames(
                h5_filename,
                movie_fnames,
                movie_cam_ids=movie_cam_ids,
                white_background=config['what to show']['white_background'],
                max_n_frames=max_n_frames,
                start=start,
                stop=stop,
                rgb8_if_color=True,
                camn2cam_id=camn2cam_id,
            )):

        if frame_enum % nth_frame != 0:
            continue

        tracker_data = frame_dict['tracker_data']
        global_data = frame_dict['global_data']

        if data3d is not None:
            this_frame_3d_data = data3d[data3d['frame'] == frame]
            if dataqual_3d is None:
                this_frame_dataqual = None
            else:
                this_frame_dataqual = dataqual_3d[data3d['frame'] == frame]
        else:
            this_frame_3d_data = None
            this_frame_dataqual = None

        if data_raw_3d is not None:
            this_frame_raw_3d_data = data_raw_3d[data_raw_3d['frame'] == frame]
            if dataqual_raw_3d is None:
                this_frame_raw_dataqual = None
            else:
                this_frame_raw_dataqual = dataqual_raw_3d[data_raw_3d['frame']
                                                          == frame]
        else:
            this_frame_raw_3d_data = None
            this_frame_raw_dataqual = None

        if config['what to show']['zoom_obj']:
            zoom_cond_3d = this_frame_3d_data['obj_id'] == config[
                'what to show']['zoom_obj']
            if np.sum(zoom_cond_3d) == 0:
                # object not in this frame
                this_frame_this_obj_3d_data = None
            else:
                this_frame_this_obj_3d_data = this_frame_3d_data[zoom_cond_3d]

        if (frame_enum % 100) == 0:
            print '%s: frame %d' % (datetime_str, frame)

        saved_fnames = []
        for movie_idx, ufmf_fname in enumerate(movie_fnames):
            try:
                frame_data = frame_dict[ufmf_fname]
            except KeyError:
                # no data saved (frame skip on Prosilica camera?)
                if movie_cam_ids is not None:
                    cam_id = movie_cam_ids[movie_idx]
                else:
                    cam_id = ufmf_tools.get_cam_id_from_ufmf_fname(ufmf_fname)
                camn = None
                if cam_id not in blank_images:
                    im_w, im_h = global_data['width_heights'][cam_id]
                    image = np.empty((im_h, im_w), dtype=np.uint8)
                    image.fill(255)
                    blank_images[cam_id] = image
                image = blank_images[cam_id]
                mean_image = None
            else:
                cam_id = frame_data['cam_id']
                camn = frame_data['camn']
                image = frame_data['image']
                if config['what to show']['image_manipulation'] == 'absdiff':
                    mean_image = frame_data['mean']
                del frame_data
            save_fname = 'tmp_frame%07d_%s.png' % (frame, cam_id)
            save_fname_path = os.path.join(dest_dir, save_fname)

            pixel_aspect = config[cam_id].get('pixel_aspect', 1)
            transform = config[cam_id].get('transform', 'orig')

            border_pixels = config['what to show']['border_pixels']

            if config['what to show']['max_resolution'] is not None:
                b2 = border_pixels * 2
                fix_w, fix_h = config['what to show']['max_resolution']
                fix_aspect = (fix_w - b2) / float(fix_h - b2)
                desire_aspect = image.shape[1] / float(
                    image.shape[0] * pixel_aspect)
                if desire_aspect >= fix_aspect:
                    # image is wider than resolution given
                    device_w = fix_w - b2
                    device_h = (fix_w - b2) / desire_aspect
                    device_x = border_pixels
                    device_y = (fix_h - device_h + border_pixels) / 2.0
                else:
                    # image is taller than resolution given
                    device_h = fix_h - b2
                    device_w = (fix_h - b2) * desire_aspect
                    device_y = border_pixels
                    device_x = (fix_w - device_w + border_pixels) / 2.0
                user_rect = (0, 0, image.shape[1], image.shape[0])
            elif config['what to show']['zoom_obj']:
                if border_pixels != 0:
                    raise NotImplementedError()
                device_x = 0
                device_y = 0
                device_w = config['what to show']['zoom_orig_pixels'] * config[
                    'what to show']['zoom_factor']
                device_h = device_w
                fix_w = device_w
                fix_h = device_h

                if this_frame_this_obj_3d_data is not None:
                    X = np.array([
                        this_frame_this_obj_3d_data['x'],
                        this_frame_this_obj_3d_data['y'],
                        this_frame_this_obj_3d_data['z'],
                        np.ones_like(this_frame_this_obj_3d_data['x'])
                    ]).T
                    xarr, yarr = R.find2d(cam_id, X, distorted=True)
                    assert len(xarr) == 1
                    x = xarr[0]
                    y = yarr[0]
                    r = config['what to show']['zoom_orig_pixels'] * 0.5
                    user_rect = (x - r, y - r, r * 2, r * 2)
                else:
                    # we're not tracking object -- don't draw anything
                    user_rect = (-1000, -1000, 10, 10)
            else:
                device_x = border_pixels
                device_y = border_pixels
                device_w = image.shape[1]
                device_h = int(image.shape[0] *
                               pixel_aspect)  # compensate for pixel_aspect
                fix_w = device_w + 2 * border_pixels
                fix_h = device_h + 2 * border_pixels
                user_rect = (0, 0, image.shape[1], image.shape[0])

            canv = benu.Canvas(save_fname_path, fix_w, fix_h)
            device_rect = (device_x, device_y, device_w, device_h)
            with canv.set_user_coords(device_rect,
                                      user_rect,
                                      transform=transform):
                if config['what to show']['image_manipulation'] == 'raw':
                    canv.imshow(image, 0, 0, cmap=colormap)
                if config['what to show']['image_manipulation'] == 'absdiff':
                    if mean_image is not None:
                        adsdiff_image = abs(
                            image.astype(np.int16) -
                            mean_image.astype(np.int16))
                        scaled_show = np.clip((5 * adsdiff_image) + 127, 0,
                                              255).astype(np.uint8)
                        canv.imshow(scaled_show, 0, 0, cmap=colormap)
                if config['what to show'][
                        'show_2d_position'] and camn is not None:
                    cond = tracker_data['camn'] == camn
                    this_cam_data = tracker_data[cond]
                    xarr = np.atleast_1d(this_cam_data['x'])
                    yarr = np.atleast_1d(this_cam_data['y'])
                    canv.scatter(
                        xarr,
                        yarr,
                        color_rgba=(0, 0, 0, 1),
                        radius=10,
                        markeredgewidth=config['what to show']['linewidth'],
                    )
                    # draw shadow
                    canv.scatter(
                        xarr + config['what to show']['linewidth'],
                        yarr + config['what to show']['linewidth'],
                        color_rgba=(1, 1, 1, 1),
                        radius=10,
                        markeredgewidth=config['what to show']['linewidth'],
                    )
                if config['what to show'][
                        'show_2d_orientation'] and camn is not None:
                    cond = tracker_data['camn'] == camn
                    this_cam_data = tracker_data[cond]
                    xarr = np.atleast_1d(this_cam_data['x'])
                    yarr = np.atleast_1d(this_cam_data['y'])
                    slope = np.atleast_1d(this_cam_data['slope'])
                    thetaarr = np.arctan(slope)
                    line_len = 30.0
                    xinc = np.cos(thetaarr) * line_len
                    yinc = np.sin(thetaarr) * line_len / float(pixel_aspect)
                    for x, y, xi, yi in zip(xarr, yarr, xinc, yinc):
                        xarr = np.array([x - xi, x + xi])
                        yarr = np.array([y - yi, y + yi])
                        if np.any(np.isnan(xarr)) or np.any(np.isnan(yarr)):
                            continue
                        canv.plot(
                            xarr,
                            yarr,
                            color_rgba=(0, 1, 0, 0.4),
                            linewidth=config['what to show']['linewidth'],
                        )
                if config['what to show'][
                        'show_3d_smoothed_position'] and camn is not None:
                    if len(this_frame_3d_data):
                        X = np.array([
                            this_frame_3d_data['x'], this_frame_3d_data['y'],
                            this_frame_3d_data['z'],
                            np.ones_like(this_frame_3d_data['x'])
                        ]).T
                        xarr, yarr = R.find2d(cam_id, X, distorted=True)
                        canv.scatter(
                            xarr,
                            yarr,
                            color_rgba=(0, 1, 1, 1),
                            radius=10,
                            markeredgewidth=config['what to show']
                            ['linewidth'],
                        )

                if config['what to show'][
                        'show_3d_MLE_position'] and camn is not None:
                    if len(this_frame_raw_3d_data):
                        X = np.array([
                            this_frame_raw_3d_data['x'],
                            this_frame_raw_3d_data['y'],
                            this_frame_raw_3d_data['z'],
                            np.ones_like(this_frame_raw_3d_data['x'])
                        ]).T
                        xarr, yarr = R.find2d(cam_id, X, distorted=True)
                        canv.scatter(
                            xarr,
                            yarr,
                            color_rgba=(0.2, 0.2, 0.5, 1),
                            radius=8,
                            markeredgewidth=config['what to show']
                            ['linewidth'],
                        )
                        # draw shadow
                        canv.scatter(
                            xarr + config['what to show']['linewidth'],
                            yarr + config['what to show']['linewidth'],
                            color_rgba=(0.7, 0.7, 1, 1),  # blue
                            radius=8,
                            markeredgewidth=config['what to show']
                            ['linewidth'],
                        )

                if config['what to show'][
                        'show_3d_raw_orientation'] and camn is not None:
                    if len(this_frame_raw_3d_data):
                        hzs = np.array([
                            this_frame_raw_3d_data['hz_line0'],
                            this_frame_raw_3d_data['hz_line1'],
                            this_frame_raw_3d_data['hz_line2'],
                            this_frame_raw_3d_data['hz_line3'],
                            this_frame_raw_3d_data['hz_line4'],
                            this_frame_raw_3d_data['hz_line5']
                        ]).T
                        Xs = np.array([
                            this_frame_raw_3d_data['x'],
                            this_frame_raw_3d_data['y'],
                            this_frame_raw_3d_data['z']
                        ]).T
                        cam_center = R.get_camera_center(cam_id)[:, 0]
                        for (X, hz,
                             this_dataqual) in zip(Xs, hzs,
                                                   this_frame_raw_dataqual):
                            if this_dataqual < min_ori_qual:
                                continue
                            cam_ray = geom.line_from_points(
                                geom.ThreeTuple(cam_center),
                                geom.ThreeTuple(X))
                            raw_ori_line = geom.line_from_HZline(hz)
                            X_ = raw_ori_line.get_my_point_closest_to_line(
                                cam_ray)

                            ld = raw_ori_line.direction()
                            dmag = abs(ld)
                            du = ld * (1. / dmag
                                       )  # unit length direction (normalize)

                            length = 0.5  # arbitrary, 0.5 meters
                            N = 100  # n segments (to deal with distortion)

                            X0 = X_.vals + du.vals * -length / 2.0
                            X = X0[:, np.newaxis] + np.linspace(0, length, N)[
                                np.newaxis, :] * du.vals[:, np.newaxis]
                            Xh = np.vstack(
                                (X, np.ones_like(X[0, np.newaxis, :]))).T
                            xarr, yarr = R.find2d(cam_id, Xh, distorted=True)
                            canv.plot(
                                xarr,
                                yarr,
                                color_rgba=(0, 0, 1, 1),  # blue
                                linewidth=config['what to show']['linewidth'],
                            )

                if config['what to show'][
                        'show_3d_smoothed_orientation'] and camn is not None:
                    if len(this_frame_3d_data):
                        for (row, ori_qual) in zip(this_frame_3d_data,
                                                   this_frame_dataqual):
                            if ori_qual < min_ori_qual:
                                continue
                            X0 = np.array([
                                row['x'], row['y'], row['z'],
                                np.ones_like(row['x'])
                            ]).T
                            dx = np.array([
                                row['dir_x'], row['dir_y'], row['dir_z'],
                                np.zeros_like(row['x'])
                            ]).T
                            X1 = X0 + dx * orientation_3d_line_length
                            if np.any(np.isnan(X1)):
                                continue
                            pts = np.vstack([X0, X1])
                            xarr, yarr = R.find2d(cam_id, pts, distorted=True)
                            canv.plot(
                                xarr,
                                yarr,
                                color_rgba=(1, 0, 0, 1),  # red
                                linewidth=config['what to show']['linewidth'],
                            )

                if config['what to show'][
                        'show_3d_raw_chosen_orientation'] and camn is not None:
                    if len(this_frame_3d_data):
                        for (row, ori_qual) in zip(this_frame_3d_data,
                                                   this_frame_dataqual):
                            if ori_qual < min_ori_qual:
                                continue
                            X0 = np.array([
                                row['x'], row['y'], row['z'],
                                np.ones_like(row['x'])
                            ]).T
                            dx = np.array([
                                row['rawdir_x'], row['rawdir_y'],
                                row['rawdir_z'],
                                np.zeros_like(row['x'])
                            ]).T
                            X1 = X0 + dx * orientation_3d_line_length
                            if np.any(np.isnan(X1)):
                                continue
                            pts = np.vstack([X0, X1])
                            xarr, yarr = R.find2d(cam_id, pts, distorted=True)
                            canv.plot(
                                xarr,
                                yarr,
                                color_rgba=(1, 159. / 255, 0, 1),  # orange
                                linewidth=config['what to show']['linewidth'],
                            )

                if config['what to show']['obj_labels'] and camn is not None:
                    if len(this_frame_3d_data):
                        X = np.array([
                            this_frame_3d_data['x'], this_frame_3d_data['y'],
                            this_frame_3d_data['z'],
                            np.ones_like(this_frame_3d_data['x'])
                        ]).T
                        xarr, yarr = R.find2d(cam_id, X, distorted=True)
                        for i in range(len(xarr)):
                            obj_id = this_frame_3d_data['obj_id'][i]
                            canv.text('%d' % obj_id,
                                      xarr[i],
                                      yarr[i],
                                      font_size=14,
                                      color_rgba=(1, 0, 0, 1))

                if config['what to show'][
                        'show_3d_obj_position_text'] and camn is not None:
                    if len(this_frame_3d_data):
                        X = np.array([
                            this_frame_3d_data['x'], this_frame_3d_data['y'],
                            this_frame_3d_data['z'],
                            np.ones_like(this_frame_3d_data['x'])
                        ]).T
                        xarr, yarr = R.find2d(cam_id, X, distorted=True)
                        for i in range(len(xarr)):
                            canv.text('(%.1f, %.1f, %.1f) mm' %
                                      (X[i, 0] * 1000.0, X[i, 1] * 1000.0,
                                       X[i, 2] * 1000.0),
                                      xarr[i] + 10,
                                      yarr[i],
                                      font_size=14,
                                      color_rgba=(0, 1, 1, 1))

                if config['what to show']['show_cam_id']:
                    canv.text('%s' % cam_id,
                              0,
                              20,
                              font_size=14,
                              color_rgba=(1, 0, 0, 1))

                if workaround_ffmpeg2theora_bug:
                    # first frame should get a colored pixel so that
                    # ffmpeg doesn't interpret the whole move as grayscale
                    canv.plot(
                        [0, 1],
                        [0, 1],
                        color_rgba=(1, 0, 0, 0.1),
                    )
                    workaround_ffmpeg2theora_bug = False  # Now we already did it.

            canv.save()
            saved_fnames.append(save_fname_path)

        target = os.path.join(
            dest_dir, 'movie%s_frame%07d.png' % (datetime_str, frame_enum + 1))
        # All cameras saved for this frame, make montage
        title = '%s frame %d' % (datetime_str, frame)
        montage(saved_fnames, title, target)
        all_frame_montages.append(target)
        if not no_remove:
            for fname in saved_fnames:
                os.unlink(fname)
    print '%s: %d frames montaged' % (
        datetime_str,
        len(all_frame_montages),
    )

    if save_ogv_movie:
        orig_dir = os.path.abspath(os.curdir)
        os.chdir(dest_dir)
        try:
            CMD = 'ffmpeg2theora -v 10 movie%s_frame%%07d.png -o movie%s.ogv' % (
                datetime_str, datetime_str)
            subprocess.check_call(CMD, shell=True)
        finally:
            os.chdir(orig_dir)

        if not no_remove:
            for fname in all_frame_montages:
                os.unlink(fname)
Пример #5
0
 def tst_line_from_points(self, geom):
     line = geom.line_from_points(
         geom.ThreeTuple((2, 1, 0)), geom.ThreeTuple((2, 0, 0))
     )
     line.closest()
     line.dist2()
Пример #6
0
def state_to_hzline(x, A):
    Ax, Ay, Az = A[0], A[1], A[2]
    Ux, Uy, Uz = state_to_ori(x)
    line = geom.line_from_points(geom.ThreeTuple((Ax, Ay, Az)),
                                 geom.ThreeTuple((Ax + Ux, Ay + Uy, Az + Uz)))
    return line.to_hz()