Пример #1
0
def plot_analogs(configfile='config.txt', simday='all', **kwargs):
    """
    """

    from datetime import datetime as dt
    from netCDF4 import Dataset, MFDataset

    import uuid

    from flyingpigeon.visualisation import pdfmerge

    simoutpdf = 'Analogs.pdf'

    if (os.path.isfile(configfile) == True):
        curdir, confile = os.path.split(os.path.abspath(configfile))

        lines = [line.rstrip('\n') for line in open(configfile)]
        for i in lines:
            if 'archivefile' in i: arcfile = i.split('"')[1]
            if 'simulationfile' in i: simfile = i.split('"')[1]
            if 'outputfile' in i: analogfile = i.split('"')[1]
            if 'nanalog' in i: nanalog = int(i.split(' =')[1])
            if 'varname' in i: varname = i.split('"')[1]
            if 'predictordom' in i: domain = i.split('"')[1]

        analogfile = curdir + '/' + analogfile
        arcfile = curdir + '/' + arcfile
        simfile = curdir + '/' + simfile

        try:
            arc_times = get_time(arcfile)
            sim_times = get_time(simfile)
        except:
            arc_times = get_time_nc(arcfile)
            sim_times = get_time_nc(simfile)

        sim_dataset = Dataset(simfile)
        simvar = sim_dataset.variables[varname][:]
        # TODO: check other names for lat/lon
        lon = sim_dataset.variables['lon'][:]
        lat = sim_dataset.variables['lat'][:]
        sim_dataset.close()

        domain = domain.split(",")

        try:
            domain = [float(i) for i in domain]
        except:
            domain = [lon[0], lon[-1], lat[-1], lat[0]]

        outlist = []
        total_simmin = np.min(simvar)
        total_simmax = np.max(simvar)

        cont = [line.rstrip('\n') for line in open(analogfile)]

        Nlin = 30

        for idx, item in enumerate(cont[1:]):
            ana = item.split()
            sim_date = dt.strptime(ana[0], '%Y%m%d')
            an_dates = []
            for dat in ana[1:1 + nanalog]:
                an_dates.append(dt.strptime(dat, '%Y%m%d'))

            c_dists = ana[1 + nanalog:1 + 2 * nanalog]
            c_cors = ana[1 + 2 * nanalog:]
            dists = np.zeros((nanalog), dtype=float)
            cors = np.zeros((nanalog), dtype=float)

            for i in range(0, nanalog):
                dists[i] = float(c_dists[i])
                cors[i] = float(c_cors[i])
            min_dist = np.min(dists)
            max_corr = np.max(cors)
            w_dist = min_dist / dists
            w_corr = cors / max_corr

            sim_index = idx  # day by day

            tmp_i = []
            for i in arc_times:
                tmp_z = '%s-%s-%s' % (i.year, i.month, i.day)
                tmp_i.append(tmp_z)

            arc_index = []

            for arc in an_dates:
                arc_date_temp = '%s-%s-%s' % (arc.year, arc.month, arc.day)
                arc_index.append(tmp_i.index(arc_date_temp))

            simmin = np.min(simvar[sim_index, :, :])
            simmax = np.max(simvar[sim_index, :, :])

            # PLOT SIM ====================================
            sim_title = 'Simulation Day: ' + ana[0]
            output_file_name = 'sim_' + ana[0] + '.pdf'
            output_file = pdf_from_analog(lon=lon,
                                          lat=lat,
                                          data=simvar[sim_index, :, :],
                                          vmin=simmin,
                                          vmax=simmax,
                                          Nlin=Nlin,
                                          domain=domain,
                                          output=output_file_name,
                                          title=sim_title)
            outlist.append(str(output_file))

            # PLOT Mean analogs ====================================

            arc_dataset = Dataset(arcfile)
            arcvar = arc_dataset.variables[varname][:]
            arc_dataset.close()

            mean_ana = np.zeros((len(arcvar[0, :, 0]), len(arcvar[0, 0, :])),
                                dtype=float)
            for ida, art in enumerate(arc_index):
                mean_ana = mean_ana + arcvar[art, :, :]
            mean_ana = mean_ana / nanalog

            output_an_file_name = 'ana_' + ana[0] + '.pdf'
            an_title = 'Mean analogs for sim Day: ' + ana[0]
            an_output_file = pdf_from_analog(lon=lon,
                                             lat=lat,
                                             data=mean_ana,
                                             vmin=simmin,
                                             vmax=simmax,
                                             Nlin=Nlin,
                                             domain=domain,
                                             output=output_an_file_name,
                                             title=an_title)
            outlist.append(str(an_output_file))

            # PLOT BEST (first) analog

            output_ban_file_name = 'bana_' + ana[0] + '.pdf'  #PDF!!
            ban_title = 'BEST analog for sim Day ' + ana[0] + ' is: ' + ana[1]
            ban_output_file = pdf_from_analog(lon=lon,
                                              lat=lat,
                                              data=arcvar[arc_index[0]],
                                              vmin=simmin,
                                              vmax=simmax,
                                              Nlin=Nlin,
                                              domain=domain,
                                              output=output_ban_file_name,
                                              title=ban_title)
            outlist.append(str(ban_output_file))

            # PLOT WORST (last) analog

            output_wan_file_name = 'wana_' + ana[0] + '.pdf'  #PDF!!
            wan_title = 'LAST analog for sim Day ' + ana[0] + ' is: ' + ana[
                nanalog]
            wan_output_file = pdf_from_analog(lon=lon,
                                              lat=lat,
                                              data=arcvar[arc_index[-1]],
                                              vmin=simmin,
                                              vmax=simmax,
                                              Nlin=Nlin,
                                              domain=domain,
                                              output=output_wan_file_name,
                                              title=wan_title)
            outlist.append(str(wan_output_file))

            # PLOT Max and Min correl analog

            min_c_index = np.argmin(cors)
            max_c_index = np.argmax(cors)

            output_bcan_file_name = 'bcana_' + ana[0] + '.pdf'  #PDF!!
            bcan_title = 'Analog with max corr for sim Day ' + ana[
                0] + ' is: ' + ana[1 + max_c_index]
            bcan_output_file = pdf_from_analog(
                lon=lon,
                lat=lat,
                data=arcvar[arc_index[max_c_index]],
                vmin=simmin,
                vmax=simmax,
                Nlin=Nlin,
                domain=domain,
                output=output_bcan_file_name,
                title=bcan_title)
            outlist.append(str(bcan_output_file))

            output_wcan_file_name = 'wcana_' + ana[0] + '.pdf'  #PDF!!
            wcan_title = 'Analog with min corr for sim Day ' + ana[
                0] + ' is: ' + ana[1 + min_c_index]
            wcan_output_file = pdf_from_analog(
                lon=lon,
                lat=lat,
                data=arcvar[arc_index[min_c_index]],
                vmin=simmin,
                vmax=simmax,
                Nlin=Nlin,
                domain=domain,
                output=output_wcan_file_name,
                title=wcan_title)
            outlist.append(str(wcan_output_file))
            """    
            # PLOT analogs dist weighted ====================================
            mean_ana = np.zeros((len(arcvar[0,:,0]),len(arcvar[0,0,:])),dtype=float)
            for ida, art in enumerate(arc_index):
                mean_ana=mean_ana+arcvar[art,:,:]*w_dist[ida]
    
            mean_ana = mean_ana/sum(w_dist)
    
            # PLOT analogs corr weighted ====================================
            mean_ana = np.zeros((len(arcvar[0,:,0]),len(arcvar[0,0,:])),dtype=float)
            for ida, art in enumerate(arc_index):
                mean_ana=mean_ana+arcvar[art,:,:]*w_corr[ida]
    
            mean_ana = mean_ana/sum(w_corr)
   
            """
        simoutpdf = pdfmerge(outlist)
    # get the information from config file:
    # netcdf files, period, Nanalogs, ouput analogs

    # get the information from config file:
    # netcdf files, period, Nanalogs, ouput analogs
    else:
        simoutpdf = 'Analogs.pdf'
        # TODO: call this func with analogfile = '..',
        # arguments came from kwargs
        # need to prescribe all input info - to use with external analogs results.
        # check kwargs: ncfiles, N analogs (?), periods, etc
    return simoutpdf
Пример #2
0
    def execute(self):
        from os.path import basename
        from flyingpigeon import sdm
        from flyingpigeon.utils import archive, archiveextract  # , get_domain
        from flyingpigeon.visualisation import map_PAmask

        init_process_logger('log.txt')
        self.output_log.setValue('log.txt')

        self.status.set('Start process', 0)

        try:
            self.status.set('reading the arguments', 5)
            resources = archiveextract(
                self.getInputValues(identifier='input_indices'))
            csv_file = self.getInputValues(identifier='gbif')[0]
            period = self.getInputValues(identifier='period')
            period = period[0]
            archive_format = self.archive_format.getValue()
        except:
            logger.error('failed to read in the arguments')

        try:
            self.status.set('read in latlon coordinates', 10)
            latlon = sdm.latlon_gbifcsv(csv_file)
        except:
            logger.exception('failed to extract the latlon points')

        try:
            self.status.set('plot map', 20)
            from flyingpigeon.visualisation import map_gbifoccurrences
            # latlon = sdm.latlon_gbifdic(gbifdic)
            occurence_map = map_gbifoccurrences(latlon)
        except:
            logger.exception('failed to plot occurence map')

        # try:
        #     self.status.set('get domain', 30)
        #     domains = set()
        #     for indice in resources:
        #         # get_domain works only if metadata are set in a correct way
        #         domains = domains.union([basename(indice).split('_')[1]])
        #     if len(domains) == 1:
        #         domain = list(domains)[0]
        #         logger.info('Domain %s found in indices files' % domain)
        #     else:
        #         logger.warn('NOT a single domain in indices files %s' % domains)
        # except:
        #     logger.exception('failed to get domains')

        try:
            # sort indices
            indices_dic = sdm.sort_indices(resources)
            logger.info('indice files sorted for %s Datasets' %
                        len(indices_dic.keys()))
        except:
            msg = 'failed to sort indices'
            logger.exception(msg)
            raise Exception(msg)

        ncs_references = []
        species_files = []
        stat_infos = []
        PAmask_pngs = []

        self.status.set('Start processing for %s Datasets' %
                        len(indices_dic.keys()))
        for count, key in enumerate(indices_dic.keys()):
            try:
                staus_nr = 40 + count * 10
                self.status.set('Start processing of %s' % key, staus_nr)
                ncs = indices_dic[key]
                logger.info('with %s files' % len(ncs))

                try:
                    self.status.set('generating the PA mask', 20)
                    PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0])
                    logger.info('PA mask sucessfully generated')
                except:
                    logger.exception('failed to generate the PA mask')

                try:
                    self.status.set('Ploting PA mask', 25)
                    PAmask_pngs.extend([map_PAmask(PAmask)])
                except:
                    logger.exception('failed to plot the PA mask')

                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs,
                                                      period=period)
                    ncs_references.extend(ncs_reference)
                    logger.info('reference indice calculated %s ' %
                                ncs_references)
                    self.status.set('reference indice calculated',
                                    staus_nr + 2)
                except:
                    msg = 'failed to calculate the reference'
                    logger.exception(msg)
                    # raise Exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(
                        ncs_reference, PAmask, modelname=key)
                    stat_infos.append(gam_info)
                    self.status.set('GAM sucessfully trained', staus_nr + 5)
                except:
                    msg = 'failed to train GAM for %s' % (key)
                    logger.exception(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    self.status.set('prediction done', staus_nr + 7)
                except:
                    msg = 'failed to predict tree occurence'
                    logger.exception(msg)
                    # raise Exception(msg)

                # try:
                #     self.status.set('land sea mask for predicted data', staus_nr + 8)
                #     from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                #     mask = invert(isnan(PAmask))
                #     mask = broadcast_arrays(prediction, mask)[1]
                #     prediction[mask is False] = nan
                # except:
                #     logger.exception('failed to mask predicted data')

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    logger.info('Favourabillity written to file')
                except:
                    msg = 'failed to write species file'
                    logger.exception(msg)
                    # raise Exception(msg)
            except:
                msg = 'failed to process SDM chain for %s ' % key
                logger.exception(msg)
                # raise Exception(msg)

        try:
            archive_references = None
            archive_references = archive(ncs_references, format=archive_format)
            logger.info('indices 2D added to archive')
        except:
            msg = 'failed adding 2D indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        archive_predicion = None
        try:
            archive_predicion = archive(species_files, format=archive_format)
            logger.info('species_files added to archive')
        except:
            msg = 'failed adding species_files indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        try:
            from flyingpigeon.visualisation import pdfmerge, concat_images
            stat_infosconcat = pdfmerge(stat_infos)
            logger.debug('pngs %s' % PAmask_pngs)
            PAmask_png = concat_images(PAmask_pngs, orientation='h')
            logger.info('stat infos pdfs and mask pngs merged')
        except:
            logger.exception('failed to concat images')
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf',
                                                   prefix='foobar-',
                                                   dir='.')
            _, PAmask_png = tempfile.mkstemp(suffix='.png',
                                             prefix='foobar-',
                                             dir='.')

        self.output_gbif.setValue(occurence_map)
        self.output_PA.setValue(PAmask_png)
        self.output_reference.setValue(archive_references)
        self.output_prediction.setValue(archive_predicion)
        self.output_info.setValue(stat_infosconcat)
        self.status.set('done', 100)
Пример #3
0
    def execute(self):
        init_process_logger('log.txt')
        self.output_log.setValue('log.txt')

        from os.path import basename
        from flyingpigeon import sdm
        from flyingpigeon.utils import archive, archiveextract

        self.status.set('Start process', 0)

        try:
            logger.info('reading the arguments')
            resources = archiveextract(
                self.getInputValues(identifier='resources'))
            taxon_name = self.getInputValues(identifier='taxon_name')[0]
            bbox_obj = self.BBox.getValue()
            bbox = [
                bbox_obj.coords[0][0], bbox_obj.coords[0][1],
                bbox_obj.coords[1][0], bbox_obj.coords[1][1]
            ]
            period = self.getInputValues(identifier='period')
            period = period[0]
            indices = self.getInputValues(identifier='input_indices')
            archive_format = self.archive_format.getValue()
            logger.debug("indices = %s for %s ", indices, taxon_name)
            logger.info("bbox={0}".format(bbox))
        except Exception as e:
            logger.error('failed to read in the arguments %s ' % e)
        logger.info('indices %s ' % indices)

        try:
            self.status.set('Fetching GBIF Data', 10)
            gbifdic = sdm.get_gbif(taxon_name, bbox=bbox)
        except Exception as e:
            msg = 'failed to search gbif.'
            logger.exception(msg)
            raise Exception(msg)

        try:
            self.status.set('write csv file', 70)
            gbifcsv = sdm.gbifdic2csv(gbifdic)
        except Exception as e:
            msg = 'failed to write csv file.'
            logger.exception(msg)
            raise Exception(msg)

        try:
            self.status.set('plot map', 80)
            from flyingpigeon.visualisation import map_gbifoccurrences
            latlon = sdm.latlon_gbifdic(gbifdic)
            occurence_map = map_gbifoccurrences(latlon)
        except Exception as e:
            msg = 'failed to plot occurence map.'
            logger.exception(msg)
            raise Exception(msg)

        #################################
        # calculate the climate indices
        #################################

        # get the indices
        ncs_indices = None
        try:
            self.status.set(
                'start calculation of climate indices for %s' % indices, 30)
            ncs_indices = sdm.get_indices(resources=resources, indices=indices)
            logger.info('indice calculation done')
        except:
            msg = 'failed to calculate indices'
            logger.exception(msg)
            raise Exception(msg)

        try:
            self.status.set('get domain', 30)
            domains = set()
            for resource in ncs_indices:
                # get_domain works only if metadata are set in a correct way
                domains = domains.union([basename(resource).split('_')[1]])
            if len(domains) == 1:
                domain = list(domains)[0]
                logger.debug('Domain %s found in indices files' % domain)
            else:
                logger.error('Not a single domain in indices files %s' %
                             domains)
        except Exception as e:
            logger.exception('failed to get domains %s' % e)

        try:
            self.status.set('generating the PA mask', 20)
            PAmask = sdm.get_PAmask(coordinates=latlon, domain=domain)
            logger.info('PA mask sucessfully generated')
        except Exception as e:
            logger.exception('failed to generate the PA mask: %s' % e)

        try:
            self.status.set('Ploting PA mask', 25)
            from flyingpigeon.visualisation import map_PAmask
            PAmask_png = map_PAmask(PAmask)
        except Exception as e:
            logger.exception('failed to plot the PA mask: %s' % e)

        try:
            # sort indices
            indices_dic = None
            indices_dic = sdm.sort_indices(ncs_indices)
            logger.info('indice files sorted for %s Datasets' %
                        len(indices_dic.keys()))
        except:
            msg = 'failed to sort indices'
            logger.exception(msg)
            raise Exception(msg)

        ncs_references = []
        species_files = []
        stat_infos = []

        for count, key in enumerate(indices_dic.keys()):
            try:
                staus_nr = 40 + count * 10
                self.status.set('Start processing of %s' % key, staus_nr)
                ncs = indices_dic[key]
                logger.info('with %s files' % len(ncs))
                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs,
                                                      period=period)
                    ncs_references.extend(ncs_reference)
                    logger.info('reference indice calculated %s ' %
                                ncs_references)
                except:
                    msg = 'failed to calculate the reference'
                    logger.exception(msg)
                    raise Exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(
                        ncs_reference, PAmask)
                    stat_infos.append(gam_info)
                    self.status.set('GAM sucessfully trained', staus_nr + 5)
                except Exception as e:
                    msg = 'failed to train GAM for %s : %s' % (key, e)
                    logger.debug(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    self.status.set('prediction done', staus_nr + 7)
                except Exception as e:
                    msg = 'failed to predict tree occurence %s' % e
                    logger.exception(msg)
                    # raise Exception(msg)

                try:
                    self.status.set('land sea mask for predicted data',
                                    staus_nr + 8)
                    from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                    mask = invert(isnan(PAmask))
                    mask = broadcast_arrays(prediction, mask)[1]
                    prediction[mask is False] = nan
                except Exception as e:
                    logger.debug('failed to mask predicted data: %s' % e)

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    logger.info('Favourabillity written to file')
                except Exception as e:
                    msg = 'failed to write species file %s' % e
                    logger.debug(msg)
                    # raise Exception(msg)

            except Exception as e:
                msg = 'failed to calculate reference indices. %s ' % e
                logger.exception(msg)
                raise Exception(msg)

        try:
            archive_indices = None
            archive_indices = archive(ncs_indices, format=archive_format)
            logger.info('indices added to archive')
        except:
            msg = 'failed adding indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        archive_references = None
        try:
            archive_references = archive(ncs_references, format=archive_format)
            logger.info('indices reference added to archive')
        except:
            msg = 'failed adding reference indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        archive_predicion = None
        try:
            archive_predicion = archive(species_files, format=archive_format)
            logger.info('species_files added to archive')
        except:
            msg = 'failed adding species_files indices to archive'
            logger.exception(msg)
            raise Exception(msg)
        try:
            from flyingpigeon.visualisation import pdfmerge
            stat_infosconcat = pdfmerge(stat_infos)
            logger.info('stat infos pdfs merged')
        except:
            logger.exception('failed to concat images')
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf',
                                                   prefix='foobar-',
                                                   dir='.')

        self.output_csv.setValue(gbifcsv)
        self.output_gbif.setValue(occurence_map)
        self.output_PA.setValue(PAmask_png)
        self.output_indices.setValue(archive_indices)
        self.output_reference.setValue(archive_references)
        self.output_prediction.setValue(archive_predicion)
        self.output_info.setValue(stat_infosconcat)

        self.status.set('done', 100)
Пример #4
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        response.update_status('Start process', 0)

        try:
            LOGGER.info('reading the arguments')
            resources = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))
            taxon_name = request.inputs['taxon_name'][0].data
            bbox = [-180, -90, 180, 90]
            # bbox_obj = self.BBox.getValue()
            # bbox = [bbox_obj.coords[0][0],
            #         bbox_obj.coords[0][1],
            #         bbox_obj.coords[1][0],
            #         bbox_obj.coords[1][1]]
            period = request.inputs['period']
            period = period[0].data
            indices = [inpt.data for inpt in request.inputs['indices']]
            archive_format = request.inputs['archive_format'][0].data
            LOGGER.exception("indices = %s for %s ", indices, taxon_name)
            LOGGER.info("bbox={0}".format(bbox))
        except:
            LOGGER.exception('failed to read in the arguments')
        LOGGER.info('indices %s ' % indices)

        try:
            response.update_status('Fetching GBIF Data', 10)
            gbifdic = sdm.get_gbif(taxon_name, bbox=bbox)
            LOGGER.info('Fetched GBIF data')
        except:
            msg = 'failed to search gbif.'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            response.update_status('write csv file', 70)
            gbifcsv = sdm.gbifdic2csv(gbifdic)
            LOGGER.info('GBIF data written to file')
        except:
            msg = 'failed to write csv file.'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            response.update_status('plot map', 80)
            latlon = sdm.latlon_gbifdic(gbifdic)
            occurence_map = map_gbifoccurrences(latlon)
        except:
            msg = 'failed to plot occurence map.'
            LOGGER.exception(msg)
            raise Exception(msg)

        #################################
        # calculate the climate indices
        #################################

        # get the indices
        ncs_indices = None
        try:
            response.update_status(
                'start calculation of climate indices for %s' % indices, 30)
            ncs_indices = sdm.get_indices(resource=resources, indices=indices)
            LOGGER.info('indice calculation done')
        except:
            msg = 'failed to calculate indices'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            # sort indices
            indices_dic = sdm.sort_indices(ncs_indices)
            LOGGER.info('indice files sorted in dictionary')
        except:
            msg = 'failed to sort indices'
            LOGGER.exception(msg)
            indices_dic = {'dummy': []}

        ncs_references = []
        species_files = []
        stat_infos = []
        PAmask_pngs = []

        response.update_status('Start processing for %s Datasets' %
                               len(indices_dic.keys()))

        for count, key in enumerate(indices_dic.keys()):
            try:
                staus_nr = 40 + count * 10
                response.update_status('Start processing of %s' % key,
                                       staus_nr)
                ncs = indices_dic[key]
                LOGGER.info('with %s files' % len(ncs))

                try:
                    response.update_status('generating the PA mask', 20)
                    PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0])
                    LOGGER.info('PA mask sucessfully generated')
                except:
                    LOGGER.exception('failed to generate the PA mask')

                try:
                    response.update_status('Ploting PA mask', 25)
                    PAmask_pngs.extend([map_PAmask(PAmask)])
                except:
                    LOGGER.exception('failed to plot the PA mask')

                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs,
                                                      period=period)
                    ncs_references.extend(ncs_reference)
                    LOGGER.info('reference indice calculated %s ' %
                                ncs_references)
                except:
                    msg = 'failed to calculate the reference'
                    LOGGER.exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(
                        ncs_reference, PAmask)
                    stat_infos.append(gam_info)
                    response.update_status('GAM sucessfully trained',
                                           staus_nr + 5)
                except:
                    msg = 'failed to train GAM for %s' % (key)
                    LOGGER.exception(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    response.update_status('prediction done', staus_nr + 7)
                except:
                    msg = 'failed to predict tree occurence'
                    LOGGER.exception(msg)
                    # raise Exception(msg)

                # try:
                #     response.update_status('land sea mask for predicted data',  staus_nr + 8)
                #     from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                #     mask = invert(isnan(PAmask))
                #     mask = broadcast_arrays(prediction, mask)[1]
                #     prediction[mask is False] = nan
                # except:
                #     LOGGER.exception('failed to mask predicted data')

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    LOGGER.info('Favourabillity written to file')
                except:
                    msg = 'failed to write species file'
                    LOGGER.exception(msg)
                    # raise Exception(msg)

            except:
                msg = 'failed to calculate reference indices'
                LOGGER.exception(msg)
                raise Exception(msg)

        try:
            archive_indices = archive(ncs_indices, format=archive_format)
            LOGGER.info('indices added to archive')
        except:
            msg = 'failed adding indices to archive'
            LOGGER.exception(msg)
            archive_indices = tempfile.mkstemp(suffix='.tar',
                                               prefix='foobar-',
                                               dir='.')

        try:
            archive_references = archive(ncs_references, format=archive_format)
            LOGGER.info('indices reference added to archive')
        except:
            msg = 'failed adding reference indices to archive'
            LOGGER.exception(msg)
            archive_references = tempfile.mkstemp(suffix='.tar',
                                                  prefix='foobar-',
                                                  dir='.')

        try:
            archive_prediction = archive(species_files, format=archive_format)
            LOGGER.info('species_files added to archive')
        except:
            msg = 'failed adding species_files indices to archive'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            stat_infosconcat = pdfmerge(stat_infos)
            LOGGER.debug('pngs %s' % PAmask_pngs)
            PAmask_png = concat_images(PAmask_pngs, orientation='h')
            LOGGER.info('stat infos pdfs and mask pngs merged')
        except:
            LOGGER.exception('failed to concat images')
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf',
                                                   prefix='foobar-',
                                                   dir='.')
            _, PAmask_png = tempfile.mkstemp(suffix='.png',
                                             prefix='foobar-',
                                             dir='.')

        response.outputs['output_gbif'].file = occurence_map
        response.outputs['output_PA'].file = PAmask_png
        response.outputs['output_indices'].file = archive_indices
        response.outputs['output_reference'].file = archive_references
        response.outputs['output_prediction'].file = archive_prediction
        response.outputs['output_info'].file = stat_infosconcat
        response.outputs['output_csv'].file = gbifcsv

        response.update_status('done', 100)
        return response
Пример #5
0
    def _handler(self, request, response):

        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        response.update_status('Start process', 0)

        try:
            response.update_status('reading the arguments', 5)
            resources = archiveextract(
                resource=rename_complexinputs(request.inputs['resources']))
            period = request.inputs['period']
            period = period[0].data
            archive_format = request.inputs['archive_format'][0].data
            LOGGER.info("all arguments read in nr of files in resources: {}".format(len(resources)))
        except Exception as ex:
            LOGGER.exception('failed to read in the arguments: {}'.format(str(ex)))

        try:
            gbif_url = request.inputs['gbif'][0].data
            csv_file = download(gbif_url)
            LOGGER.info('CSV file fetched sucessfully: %s' % csv_file)
        except Exception as ex:
            LOGGER.exception('failed to fetch GBIF file: {}'.format(str(ex)))

        try:
            response.update_status('read in latlon coordinates', 10)
            latlon = sdm.latlon_gbifcsv(csv_file)
            LOGGER.info('read in the latlon coordinates')
        except Exception as ex:
            LOGGER.exception('failed to extract the latlon points: {}'.format(str(ex)))

        try:
            response.update_status('plot map', 20)
            occurence_map = map_gbifoccurrences(latlon)
            LOGGER.info('GBIF occourence ploted')
        except Exception as ex:
            LOGGER.exception('failed to plot occurrence map: {}'.format(str(ex)))

        try:
            # sort indices
            indices_dic = sdm.sort_indices(resources)
            LOGGER.info('indice files sorted in dictionary')
        except Exception as ex:
            msg = 'failed to sort indices: {}'.format(str(ex))
            LOGGER.exception(msg)
            indices_dic = {'dummy': []}

        ncs_references = []
        species_files = []
        stat_infos = []
        PAmask_pngs = []

        response.update_status('Start processing for {} datasets'.format(len(indices_dic.keys())))
        for count, key in enumerate(indices_dic.keys()):
            try:
                status_nr = 40 + count * 10
                response.update_status('Start processing of {}'.format(key), status_nr)
                ncs = indices_dic[key]
                LOGGER.info('with {} files'.format(len(ncs)))

                try:
                    response.update_status('generating the PA mask', 20)
                    PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0])
                    LOGGER.info('PA mask sucessfully generated')
                except Exception as ex:
                    msg = 'failed to generate the PA mask: {}'.format(str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    response.update_status('Ploting PA mask', 25)
                    PAmask_pngs.extend([map_PAmask(PAmask)])
                except Exception as ex:
                    msg = 'failed to plot the PA mask: {}'.format(str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs, period=period)
                    ncs_references.extend(ncs_reference)
                    LOGGER.info('reference indice calculated: {}'.format(ncs_references))
                    response.update_status('reference indice calculated', status_nr + 2)
                except Exception as ex:
                    msg = 'failed to calculate the reference: {}'.format(str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(ncs_reference, PAmask, modelname=key)
                    stat_infos.append(gam_info)
                    response.update_status('GAM sucessfully trained', status_nr + 5)
                except Exception as ex:
                    msg = 'failed to train GAM for {}: {}'.format(key, str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    response.update_status('prediction done', status_nr + 7)
                except Exception as ex:
                    msg = 'failed to predict tree occurence: {}'.format(str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                # try:
                #     response.update_status('land sea mask for predicted data', status_nr + 8)
                #     from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                #     mask = invert(isnan(PAmask))
                #     mask = broadcast_arrays(prediction, mask)[1]
                #     prediction[mask is False] = nan
                # except:
                #     LOGGER.exception('failed to mask predicted data')

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    LOGGER.info('Favourabillity written to file')
                except Exception as ex:
                    msg = 'failed to write species file: {}'.format(str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

            except Exception as ex:
                msg = 'failed to process SDM chain for {} : {}'.format(key, str(ex))
                LOGGER.exception(msg)
                raise Exception(msg)

        try:
            archive_references = archive(ncs_references, format=archive_format)
            LOGGER.info('indices 2D added to archive')
        except Exception as ex:
            msg = 'failed adding 2D indices to archive: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)
            archive_references = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.')

        try:
            archive_prediction = archive(species_files, format=archive_format)
            LOGGER.info('species_files added to archive')
        except Exception as ex:
            msg = 'failed adding species_files indices to archive: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)
            archive_predicion = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.')

        try:
            from flyingpigeon.visualisation import pdfmerge, concat_images
            stat_infosconcat = pdfmerge(stat_infos)
            LOGGER.debug('pngs: {}'.format(PAmask_pngs))
            PAmask_png = concat_images(PAmask_pngs, orientation='h')
            LOGGER.info('stat infos pdfs and mask pngs merged')
        except Exception as ex:
            msg = 'failed to concat images: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf', prefix='foobar-', dir='.')
            _, PAmask_png = tempfile.mkstemp(suffix='.png', prefix='foobar-', dir='.')

        response.outputs['output_gbif'].file = occurence_map
        response.outputs['output_PA'].file = PAmask_png
        response.outputs['output_reference'].file = archive_references
        response.outputs['output_prediction'].file = archive_prediction
        response.outputs['output_info'].file = stat_infosconcat

        response.update_status('done', 100)
        return response
Пример #6
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        from os.path import basename
        from flyingpigeon import sdm
        from flyingpigeon.utils import archive, archiveextract, download
        response.update_status('Start process', 0)

        try:
            LOGGER.info('reading the arguments')
            resources_raw = archiveextract(
                resource=rename_complexinputs(request.inputs['resources']))
            csv_url = request.inputs['gbif'][0].data
            period = request.inputs['period']
            period = period[0].data
            indices = request.inputs['input_indices']
            archive_format = request.inputs['archive_format']
            LOGGER.info('indices %s ' % indices)
            LOGGER.debug('csv_url %s' % csv_url)
        except Exception:
            LOGGER.exception('failed to read in the arguments')
            raise

        try:
            LOGGER.info('set up the environment')
            csv_file = download(csv_url)
            resources = archiveextract(resources_raw)
        except:
            LOGGER.exception('failed to set up the environment')
            raise

        try:
            response.update_status('read in latlon coordinates', 10)
            latlon = sdm.latlon_gbifcsv(csv_file)
            LOGGER.info('got occurence coordinates %s ' % csv_file)
        except:
            LOGGER.exception(
                'failed to extract the latlon points from file: %s' %
                (csv_file))

        try:
            response.update_status('plot map', 20)
            from flyingpigeon.visualisation import map_gbifoccurrences
            # latlon = sdm.latlon_gbifdic(gbifdic)
            occurence_map = map_gbifoccurrences(latlon)
        except:
            LOGGER.exception('failed to plot occurence map')

        #################################
        # calculate the climate indices
        #################################

        # get the indices
        ncs_indices = None
        try:
            response.update_status(
                'start calculation of climate indices for %s' % indices, 30)
            ncs_indices = sdm.get_indices(resources=resources, indices=indices)
            LOGGER.info('indice calculation done')
        except:
            msg = 'failed to calculate indices'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            response.update_status('get domain', 30)
            domains = set()
            for resource in ncs_indices:
                # get_domain works only if metadata are set in a correct way
                domains = domains.union([basename(resource).split('_')[1]])
            if len(domains) == 1:
                domain = list(domains)[0]
                LOGGER.debug('Domain %s found in indices files' % domain)
            else:
                LOGGER.error('Not a single domain in indices files %s' %
                             domains)
        except:
            LOGGER.exception('failed to get domains')

        try:
            response.update_status('generating the PA mask', 20)
            PAmask = sdm.get_PAmask(coordinates=latlon, domain=domain)
            LOGGER.info('PA mask sucessfully generated')
        except:
            LOGGER.exception('failed to generate the PA mask')

        try:
            response.update_status('Ploting PA mask', 25)
            from flyingpigeon.visualisation import map_PAmask
            PAmask_png = map_PAmask(PAmask)
        except:
            LOGGER.exception('failed to plot the PA mask')

        try:
            # sort indices
            indices_dic = None
            indices_dic = sdm.sort_indices(ncs_indices)
            LOGGER.info('indice files sorted for %s Datasets' %
                        len(indices_dic.keys()))
        except:
            msg = 'failed to sort indices'
            LOGGER.exception(msg)
            raise Exception(msg)

        ncs_references = []
        species_files = []
        stat_infos = []

        for count, key in enumerate(indices_dic.keys()):
            try:
                staus_nr = 40 + count * 10
                response.update_status('Start processing of %s' % key,
                                       staus_nr)
                ncs = indices_dic[key]
                LOGGER.info('with %s files' % len(ncs))
                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs,
                                                      period=period)
                    ncs_references.extend(ncs_reference)
                    LOGGER.info('reference indice calculated %s ' %
                                ncs_references)
                except:
                    msg = 'failed to calculate the reference'
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(
                        ncs_reference, PAmask)
                    stat_infos.append(gam_info)
                    response.update_status('GAM sucessfully trained',
                                           staus_nr + 5)
                except:
                    msg = 'failed to train GAM for %s' % (key)
                    LOGGER.debug(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    response.update_status('prediction done', staus_nr + 7)
                except:
                    msg = 'failed to predict tree occurence'
                    LOGGER.exception(msg)
                    # raise Exception(msg)

                try:
                    response.update_status('land sea mask for predicted data',
                                           staus_nr + 8)
                    from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                    mask = invert(isnan(PAmask))
                    mask = broadcast_arrays(prediction, mask)[1]
                    prediction[mask is False] = nan
                except:
                    LOGGER.debug('failed to mask predicted data')

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    LOGGER.info('Favourabillity written to file')
                except:
                    msg = 'failed to write species file'
                    LOGGER.debug(msg)
                    # raise Exception(msg)

            except:
                msg = 'failed to calculate reference indices.'
                LOGGER.exception(msg)
                raise Exception(msg)

        try:
            archive_indices = None
            archive_indices = archive(ncs_indices, format=archive_format)
            LOGGER.info('indices added to archive')
        except:
            msg = 'failed adding indices to archive'
            LOGGER.exception(msg)
            raise Exception(msg)

        archive_references = None
        try:
            archive_references = archive(ncs_references, format=archive_format)
            LOGGER.info('indices reference added to archive')
        except:
            msg = 'failed adding reference indices to archive'
            LOGGER.exception(msg)
            raise Exception(msg)

        archive_predicion = None
        try:
            archive_predicion = archive(species_files, format=archive_format)
            LOGGER.info('species_files added to archive')
        except:
            msg = 'failed adding species_files indices to archive'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            from flyingpigeon.visualisation import pdfmerge
            stat_infosconcat = pdfmerge(stat_infos)
            LOGGER.info('stat infos pdfs merged')
        except:
            LOGGER.exception('failed to concat images')
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf',
                                                   prefix='foobar-',
                                                   dir='.')

        # self.output_csv.setValue(csv_file)
        response.outputs['output_gbif'].file = occurence_map
        response.outputs['output_PA'].file = PAmask_png
        response.outputs['output_indices'].file = archive_indices
        response.outputs['output_reference'].file = archive_references
        response.outputs['archive_predicion'].file = archive_predicion
        response.outputs['output_info'].file = stat_infosconcat

        response.update_status('done', 100)
        return response