def addImage(col, row, grid, xrange): filename = mp1_data.getDataFilename(row, 2, snapshots[col]) ax = grid.grid[col][row] cbar_ax = grid.cgrid[col][row] data = torch.CFD_Data(filename, axial=True) vs = data.get_var(torch.VarType("tem", True)) vsi = data.interpolate(vs, "linear") vsmin = vs.min() vsmax = vs.max() im = torch.image(data.x[0], data.x[1], vsi, vsmin, vsmax, "linear", cmap, ax) #cb = cbar_ax.colorbar(im, format=ticker.FuncFormatter(fmt)) formatter = ticker.ScalarFormatter(useOffset=True, useMathText=True) formatter.set_powerlimits((0, 1)) cb = grid.fig.colorbar(im, cax=cbar_ax, format=ticker.FuncFormatter(fmt), orientation='horizontal') #cb.ax.xaxis.set_ticks(np.arange(0, 1.01, 0.5)) #labels = cb.ax.get_xticklabels() #labels[0] = "" #labels[2] = "" #cb.ax.set_xticklabels(labels) if grid.is_visible(col, row): zcentre = (110.0 / 200.0) * data.dx * data.ny zmin = zcentre - xrange[col][row]/2.0 zmax = zcentre + xrange[col][row]/2.0 ax.set_xlim([-xrange[col][row]/2.0, xrange[col][row]/2.0]) ax.set_ylim([zmin, zmax]) ax.xaxis.set_ticks(np.arange(-xrange[col][row]/2.0, (xrange[col][row]/2.0) + 0.0001, xrange[col][row]/4.0)) ax.yaxis.set_ticks(np.arange(zmin, zmax + 0.0001, xrange[col][row]/4.0)) ax.xaxis.get_major_ticks()[0].label1.set_visible(False) ax.xaxis.get_major_ticks()[2].label1.set_visible(False) ax.xaxis.get_major_ticks()[-1].label1.set_visible(False) ax.yaxis.get_major_ticks()[0].label1.set_visible(False) ax.yaxis.get_major_ticks()[2].label1.set_visible(False) ax.yaxis.get_major_ticks()[-1].label1.set_visible(False) # Add column and row labels if col == 0: ax.text(-0.15, 0.5, fmt.latexify("M = " + fmt.fmt_mass(mp1_data.masses[row]) + "\ \\mathrm{M_\\odot}"), fontsize=10, horizontalalignment='right', verticalalignment='center', rotation='vertical', transform=ax.transAxes) if row == 0: ax.text(0.5, 2.4, fmt.latexify("t = " + fmt.fmt_nolatex(mp1_data.times[col], 0) + "\ \\mathrm{yrs}"), fontsize=10, horizontalalignment='center', verticalalignment='bottom', rotation='horizontal', transform=ax.transAxes)
nyt = nyticks[irow] grid[2 * irow + 0].set_ylim([0, ymax]) grid[2 * irow + 1].set_ylim([0, ymax]) if irow == 4: for icol in range(2): grid[2 * irow + icol].set_yticks(np.arange(0, ymax + (ymax - 1.0e-8)/ float(nyt), ymax / float(nyt))) else: for icol in range(2): grid[2 * irow + icol].set_yticks(np.arange(ymax / float(nyt), ymax + (ymax - 1.0e-8)/ float(nyt), ymax / float(nyt))) kx1 = dict(linewidth=1.5, label="CORNISH", color='b') kx2 = dict(linewidth=1.5, label="Simulated", color='r', linestyle='--') grid[2 * irow + 0].text(0.04, 0.94, fmt.latexify("n_\\star = " + fmt.fmt_power(mp1_data.densities[irow], '{:3.1f}', 4) + "\ \\mathrm{cm^{-3}}"), fontsize=fontsize, horizontalalignment='left', verticalalignment='top', rotation='horizontal', transform=grid[2 * irow + 0].transAxes) bins0 = np.arange(0, 24, 1) bins1 = np.arange(0, 1, 0.04) bincentres0 = 0.5 * (bins0[:-1] + bins0[1:]) bincentres1 = 0.5 * (bins1[:-1] + bins1[1:]) plotter.histstep(grid[2* irow + 0], cornish_survey[:,11], bins0, errorcentres=bincentres0, normed=normed, **kx1) plotter.histstep(grid[2* irow + 0], simulated_survey[:,7], bins0, normed=normed, **kx2) plotter.histstep(grid[2* irow + 1], cornish_phy_sizes, bins1, errorcentres=bincentres1, normed=normed, **kx1) plotter.histstep(grid[2* irow + 1], phy_sizes, bins1, normed=normed, **kx2) ### Legend
def addImage(col, row, grid, xrange): filename = mp1_data.getRadioDirname(row, 2, snapshots[col], 45, 5) + "/emeasure_ff.fits" ax = grid.grid[col][row] cbar_ax = grid.cgrid[col][row] hdu_list = fits.open(filename) image_data = hdu_list[0].data sig = 5 FWHM = sig*hdu_list[0].header['PIXAS']*2.335 image_data = ndimage.gaussian_filter(image_data, sigma=(sig, sig), order=0) nx = hdu_list[0].header['NAXIS1'] ny = hdu_list[0].header['NAXIS2'] dx = -hdu_list[0].header['CDELT1']*60.0*60.0 dy = hdu_list[0].header['CDELT2']*60.0*60.0 xmax = 0.5 * nx * dx xmin = -0.5 * nx * dx ymax = 0.5 * ny * dy ymin = -0.5 * ny * dy x = np.arange(xmin + (dx/2.0), xmax, dx) y = np.arange(ymin + (dy/2.0), ymax, dy) X, Y = np.meshgrid(x, y) max = hdu_list[0].header['MPIX'] nlevels = 7 levels = [] for ilev in range(nlevels): levels.append(max/(math.sqrt(2.0)**(nlevels - ilev))) im = ax.imshow(image_data, extent=[xmin,xmax,ymin,ymax], origin='lower', cmap='gray_r') #cb = cbar_ax.colorbar(im, format=ticker.FuncFormatter(fmt)) formatter = ticker.ScalarFormatter(useOffset=True, useMathText=True) formatter.set_powerlimits((0, 1)) cb = grid.fig.colorbar(im, cax=cbar_ax, format=ticker.FuncFormatter(fmt), orientation='horizontal') #cb.ax.xaxis.set_ticks_position('top') xmax = cb.ax.get_xlim()[1] cb.ax.xaxis.set_ticks(np.arange(0, xmax, xmax/4.0)) labels = cb.ax.get_xticklabels() labels[0] = "" labels[2] = "" cb.ax.set_xticklabels(labels) ax.contour(X, Y, image_data, levels, colors='black', linewidths=0.5) ax.set_xlim([-xrange[col][row]/2.0, xrange[col][row]/2.0]) ax.set_ylim([-xrange[col][row]/2.0, xrange[col][row]/2.0]) ax.xaxis.set_ticks(np.arange(-xrange[col][row]/2.0, (xrange[col][row]/2.0) + 0.0001, xrange[col][row]/4.0)) ax.yaxis.set_ticks(np.arange(-(xrange[col][row]/2.0), (xrange[col][row]/2.0) + 0.0001, xrange[col][row]/4.0)) ax.xaxis.get_major_ticks()[0].label1.set_visible(False) ax.xaxis.get_major_ticks()[2].label1.set_visible(False) ax.xaxis.get_major_ticks()[-1].label1.set_visible(False) ax.yaxis.get_major_ticks()[0].label1.set_visible(False) ax.yaxis.get_major_ticks()[2].label1.set_visible(False) ax.yaxis.get_major_ticks()[-1].label1.set_visible(False) # Pixel angular size in upper left corner. ax.text(0.02, 0.96, '{:.2f}'.format(hdu_list[0].header['PIXAS']) + "''", fontsize=6, horizontalalignment='left', verticalalignment='top', rotation='horizontal', transform=ax.transAxes) # FWHM of guassian blur kernal in lower left corner. ax.text(0.02, 0.04, "FWHM=" + '{:.1f}'.format(FWHM) + "''", fontsize=6, horizontalalignment='left', verticalalignment='bottom', rotation='horizontal', transform=ax.transAxes) # FWHM diameter line to show scale ax.plot([(0.90)*xrange[col][row]/2.0 - FWHM, (0.90)*xrange[col][row]/2.0], [-(0.90)*xrange[col][row]/2.0, -(0.90)*xrange[col][row]/2.0]) # Peak brightness in mJy/beam in upper right rbeam_rad = 0.5 * hdu_list[0].header['BMAJ'] * math.pi / 180.0 pix_rad = abs(hdu_list[0].header['CDELT1']) * math.pi / 180.0 intensity_filename = mp1_data.getRadioDirname(row, 2, snapshots[col], 45, 5) + "/intensity_pixel_ff.fits" hdu_list2 = fits.open(intensity_filename) peak = hdu_list2[0].header['MPIX'] * math.pi * rbeam_rad * rbeam_rad / (pix_rad * pix_rad) ax.text(0.98, 0.96, '{:.2f}'.format(peak) + "mJy/b", fontsize=6, horizontalalignment='right', verticalalignment='top', rotation='horizontal', transform=ax.transAxes) # Add column and row labels def fmt_mass(x): a = '{:.0f}'.format(x) return '{}'.format(a) if col == 0: ax.text(-0.22, 0.5, fmt.latexify("M = " + fmt.fmt_mass(mp1_data.masses[row]) + "\ \\mathrm{M_\\odot}"), fontsize=10, horizontalalignment='right', verticalalignment='center', rotation='vertical', transform=ax.transAxes) if row == 0: ax.text(0.5, 1.24, fmt.latexify("t = " + fmt.fmt_nolatex(mp1_data.times[col], 0) + "\ \\mathrm{yrs}"), fontsize=10, horizontalalignment='center', verticalalignment='bottom', rotation='horizontal', transform=ax.transAxes)
def addImage(col, row, grid, xrange): if row % 2 == 1 or col % 2 == 1: return filename = mp1_data.getRadioDirname(row, 2, snapshots[col], 45, 5) + "/emeasure_ff.fits" col /= 2 row /= 2 ax = grid.grid[col][row] cbar_ax = grid.cgrid[col][row] hdu_list = fits.open(filename) image_data = hdu_list[0].data sig = 5 FWHM = sig*hdu_list[0].header['PIXAS']*2.335 image_data = ndimage.gaussian_filter(image_data, sigma=(sig, sig), order=0) nx = hdu_list[0].header['NAXIS1'] ny = hdu_list[0].header['NAXIS2'] dx = -hdu_list[0].header['CDELT1']*60.0*60.0 dy = hdu_list[0].header['CDELT2']*60.0*60.0 xmax = 0.5 * nx * dx xmin = -0.5 * nx * dx ymax = 0.5 * ny * dy ymin = -0.5 * ny * dy x = np.arange(xmin + (dx/2.0), xmax, dx) y = np.arange(ymin + (dy/2.0), ymax, dy) X, Y = np.meshgrid(x, y) max = hdu_list[0].header['MPIX'] nlevels = 7 levels = [] for ilev in range(nlevels): levels.append(max/(math.sqrt(2.0)**(nlevels - ilev))) im = ax.imshow(image_data, extent=[xmin,xmax,ymin,ymax], origin='lower', cmap='gray_r', zorder=0) #cb = cbar_ax.colorbar(im, format=ticker.FuncFormatter(fmt)) formatter = ticker.ScalarFormatter(useOffset=True, useMathText=True) formatter.set_powerlimits((0, 1)) cb = grid.fig.colorbar(im, cax=cbar_ax, format=ticker.FuncFormatter(fmt.fmt), orientation='horizontal') #cb.ax.xaxis.set_ticks_position('top') xmax = cb.ax.get_xlim()[1] cb.ax.xaxis.set_ticks(np.arange(0, xmax, xmax/4.0)) labels = cb.ax.get_xticklabels() labels[0] = "" labels[2] = "" cb.ax.set_xticklabels(labels) ax.contour(X, Y, image_data, levels, colors='black', linewidths=0.5, zorder=1) param_filename = mp1_data.getParamFilename(row, col, 25) filestring = open(param_filename, 'r').read() table = lua.eval("{" + filestring + "}") physical_dx = table["Parameters"]["Grid"]["side_length"] / float(table["Parameters"]["Grid"]["no_cells_x"]) side_length_y = table["Parameters"]["Grid"]["no_cells_y"] * physical_dx star_vert_phy = table["Parameters"]["Star"]["cell_position_y"] * physical_dx - 0.5 * side_length_y star_vert_ang = math.degrees(star_vert_phy / (1.5 * 1000 * 3.09e18)) * 60 * 60 star_y = star_vert_ang / math.sqrt(2) cloud_vert_ang = star_vert_ang + math.degrees(0.35 / 1500.0) * 60 * 60 cloud_y = cloud_vert_ang / math.sqrt(2) ax.scatter([0], [star_y], c='w', marker='*', linewidths=[0.4], zorder=2) ax.scatter([0], [cloud_y], c='w', marker='D', linewidths=[0.4], zorder=2) ax.set_xlim([-xrange[col][row]/2.0, xrange[col][row]/2.0]) ax.set_ylim([-xrange[col][row]/2.0, xrange[col][row]/2.0]) ax.xaxis.set_ticks(np.arange(-xrange[col][row]/2.0, (xrange[col][row]/2.0) + 0.0001, xrange[col][row]/4.0)) ax.yaxis.set_ticks(np.arange(-(xrange[col][row]/2.0), (xrange[col][row]/2.0) + 0.0001, xrange[col][row]/4.0)) ax.xaxis.get_major_ticks()[0].label1.set_visible(False) ax.xaxis.get_major_ticks()[2].label1.set_visible(False) ax.xaxis.get_major_ticks()[-1].label1.set_visible(False) ax.yaxis.get_major_ticks()[0].label1.set_visible(False) ax.yaxis.get_major_ticks()[2].label1.set_visible(False) ax.yaxis.get_major_ticks()[-1].label1.set_visible(False) if False: # Pixel angular size in upper left corner. ax.text(0.02, 0.96, '{:.2f}'.format(hdu_list[0].header['PIXAS']) + "''", fontsize=5, horizontalalignment='left', verticalalignment='top', rotation='horizontal', transform=ax.transAxes) # FWHM of guassian blur kernal in lower left corner. ax.text(0.02, 0.04, "FWHM=" + '{:.1f}'.format(FWHM) + "''", fontsize=5, horizontalalignment='left', verticalalignment='bottom', rotation='horizontal', transform=ax.transAxes) # FWHM diameter line to show scale ax.plot([(0.90)*xrange[col][row]/2.0 - FWHM, (0.90)*xrange[col][row]/2.0], [-(0.90)*xrange[col][row]/2.0, -(0.90)*xrange[col][row]/2.0]) # Peak brightness in mJy/beam in upper right rbeam_rad = 0.5 * hdu_list[0].header['BMAJ'] * math.pi / 180.0 pix_rad = abs(hdu_list[0].header['CDELT1']) * math.pi / 180.0 intensity_filename = mp1_data.getRadioDirname(row, col, 25, 45) + "/intensity_pixel_ff.fits" hdu_list2 = fits.open(intensity_filename) peak = hdu_list2[0].header['MPIX'] * math.pi * rbeam_rad * rbeam_rad / (pix_rad * pix_rad) ax.text(0.98, 0.96, '{:.2f}'.format(peak) + "mJy/b", fontsize=5, horizontalalignment='right', verticalalignment='top', rotation='horizontal', transform=ax.transAxes) # Add column and row labels def fmt_mass(x): a = '{:.0f}'.format(x) return '{}'.format(a) if col == 0: text_str = fmt.latexify("M = " + fmt.fmt_mass(mp1_data.masses[2 * row]) + "\ \\mathrm{M_\\odot}") ax.text(-0.3, 0.5, text_str, fontsize=8, horizontalalignment='right', verticalalignment='center', rotation='vertical', transform=ax.transAxes) if row == 0: text_str = fmt.latexify("t = " + fmt.fmt_power(int(mp1_data.times[2 * col] / 1000.0), '{:3.0f}', 0) + "\ \\mathrm{kyr}") ax.text(0.5, 1.3, text_str, fontsize=8, horizontalalignment='center', verticalalignment='bottom', rotation='horizontal', transform=ax.transAxes)
def addImage(index, grid, xrange): col = index row = 0 filename = mp1_data.getRadioDirname(5, 2, 25, angles[index], 5) + "/emeasure_ff.fits" print filename ax = grid.grid[col][row] cbar_ax = grid.cgrid[col][row] hdu_list = fits.open(filename) image_data = hdu_list[0].data sig = 5 FWHM = sig*hdu_list[0].header['PIXAS']*2.335 image_data = ndimage.gaussian_filter(image_data, sigma=(sig, sig), order=0) nx = hdu_list[0].header['NAXIS1'] ny = hdu_list[0].header['NAXIS2'] dx = -hdu_list[0].header['CDELT1']*60.0*60.0 dy = hdu_list[0].header['CDELT2']*60.0*60.0 xmax = 0.5 * nx * dx xmin = -0.5 * nx * dx ymax = 0.5 * ny * dy ymin = -0.5 * ny * dy x = np.arange(xmin + (dx/2.0), xmax, dx) y = np.arange(ymin + (dy/2.0), ymax, dy) X, Y = np.meshgrid(x, y) max = hdu_list[0].header['MPIX'] nlevels = 7 levels = [] for ilev in range(nlevels): levels.append(max/(math.sqrt(2.0)**(nlevels - ilev))) im = ax.imshow(image_data, extent=[xmin,xmax,ymin,ymax], origin='lower', cmap='gray_r') #cb = cbar_ax.colorbar(im, format=ticker.FuncFormatter(fmt)) formatter = ticker.ScalarFormatter(useOffset=True, useMathText=True) formatter.set_powerlimits((0, 1)) cb = grid.fig.colorbar(im, cax=cbar_ax, format=ticker.FuncFormatter(fmt.fmt), orientation='horizontal') #cb.ax.xaxis.set_ticks_position('top') xmax = cb.ax.get_xlim()[1] cb.ax.xaxis.set_ticks(np.arange(0, xmax, xmax/4.0)) labels = cb.ax.get_xticklabels() labels[0] = "" labels[2] = "" cb.ax.set_xticklabels(labels) ax.contour(X, Y, image_data, levels, colors='black', linewidths=0.5) ax.set_xlim([-xrange[col][row]/2.0, xrange[col][row]/2.0]) ax.set_ylim([-xrange[col][row]/2.0, xrange[col][row]/2.0]) ax.xaxis.set_ticks(np.arange(-xrange[col][row]/2.0, (xrange[col][row]/2.0) + 0.0001, xrange[col][row]/4.0)) ax.yaxis.set_ticks(np.arange(-(xrange[col][row]/2.0), (xrange[col][row]/2.0) + 0.0001, xrange[col][row]/4.0)) ax.xaxis.get_major_ticks()[0].label1.set_visible(False) ax.xaxis.get_major_ticks()[2].label1.set_visible(False) ax.xaxis.get_major_ticks()[-1].label1.set_visible(False) ax.yaxis.get_major_ticks()[0].label1.set_visible(False) ax.yaxis.get_major_ticks()[2].label1.set_visible(False) ax.yaxis.get_major_ticks()[-1].label1.set_visible(False) if col != 0: ax.tick_params(labelleft='off') # Add column and row labels if row == 0: ax.text(0.5, 1.24, fmt.latexify("\\theta_\\mathrm{i} = " + str(angles[col]) + "^\\circ"), fontsize=10, horizontalalignment='center', verticalalignment='bottom', rotation='horizontal', transform=ax.transAxes)