Пример #1
0
plt.legend(loc='upper right')
plt.xlabel(r'${\rm ZP_{GCM} - ZP_{qSLR}}')
plt.ylabel("Number of CCDs")

gcm_bands = dict()
qslr_bands = dict()
diff_bands = dict()
for b in BANDS:
    zp_g = gcm['MAG_ZERO'][gcm['BAND'] == b]
    zp_q = qslr['MAG_ZERO'][qslr['BAND'] == b]
    delta = zp_g - zp_q
    labels = qslr[HPX][qslr['BAND'] == b]
    index = np.unique(labels)
    for data, out in [(zp_g, gcm_bands), (zp_q, qslr_bands),
                      (delta, diff_bands)]:
        skymap = blank(nside)
        skymap[index] = nd.median(data, labels=labels, index=index)
        out[b] = skymap

diff_colors = dict()
for name, (b1, b2) in COLORS:
    gcm_color = gcm_bands[b1] - gcm_bands[b2]
    qslr_color = qslr_bands[b1] - qslr_bands[b2]
    skymap = gcm_color - qslr_color
    diff_colors[name] = skymap

for b in BANDS:
    skymap = diff_bands[b]
    plt.figure()
    im = plotting.draw_footprint(skymap)
    plt.colorbar(im, label=r'${\rm ZP_{GCM} - ZP_{qSLR}}$')
Пример #2
0
            and len(glob.glob(y2q1dir + '/*%05d.fits' % p))
        ])

    if len(pixels) == 0:
        msg = "Invalid pixel: %s" % opts.pix
        raise Exception(msg)

    args = [pix for pix in pixels]
    p = Pool(maxtasksperchild=1)
    out = p.map(residuals, args)

median_skymaps = odict()
mean_skymaps = odict()
std_skymaps = odict()
for band in BANDS:
    median_skymap = blank(nside)
    mean_skymap = blank(nside)
    std_skymap = blank(nside)
    for pix, val in out:
        median_skymap[pix] = val[band][0]
        mean_skymap[pix] = val[band][1]
        std_skymap[pix] = val[band][2]
    median_skymaps[band] = median_skymap
    mean_skymaps[band] = mean_skymap
    std_skymaps[band] = std_skymap

for band in BANDS:
    plt.figure()
    im = plotting.draw_footprint(median_skymaps[band])
    plt.colorbar(im, label=r'Median Offset (mag)')
    plt.title(r'Median Magnitude Offset (%s-band)' % band)
Пример #3
0
    if opts.type == 'gaia':
        func = gaia_photometry
        kwargs['version'] = 'edr3'
        outbase += '_gaia_%(version)s'%kwargs
    elif opts.type == 'rms':
        func = rms_photometry
        outbase += '_rms'
    else:
        msg = "Unrecognized type: %s"%args.type
        raise Exception(msg)

    results = utils.multiproc(func,args,kwargs)
    #results = [func(*a,**kwargs) for a in args]
     
    hpxmap = blank(nside)
     
    if None in results:
        print("WARNING: %i processes failed..."%results.count(None))
    for pix,stat in [r for r in results if r is not None]:
        hpxmap[pix] = stat
     
    hpxmap = np.ma.MaskedArray(hpxmap,np.isnan(hpxmap),fill_value=np.nan)
    hpxmaps[band] = hpxmap

    outfile = join(outdir,outbase+'_%s_n%i.fits'%(band,nside))
    print("Writing %s..."%outfile)
    hp.write_map(outfile,hpxmap,overwrite=True)

    q = [5,50,95]
    p = np.percentile(hpxmap.compressed(),q)
Пример #4
0
        config = yaml.load(open(args.config))
        BANDS = config['bands']

    NSIDE = args.nside

    outdir = mkdir('release/depth')

    infiles = sorted(glob.glob('cat/cat_hpx_*.fits'))
    
    p = Pool(maxtasksperchild=1,processes=20)
    out = p.map(depth,infiles)

    skymaps = dict()
    for b in BANDS:
        logger.info("Filling %s-band..."%b)
        skymap = blank(NSIDE)
        for i,maglims in enumerate(out):
            logger.info(str(i))
            skymap[maglims[b][0]] = maglims[b][1]
        skymaps[b] = np.ma.MaskedArray(skymap,np.isnan(skymap),fill_value=np.nan)
        outfile = join(outdir,'y2q1_maglim_%s_n%i_ring.fits'%(b,NSIDE))
        logger.info("Writing %s..."%outfile)
        healpy.write_map(outfile,skymaps[b].data)
        logger.info("Gzipping %s..."%outfile)
        subprocess.call('gzip -f %s'%outfile,shell=True)
        
    out = dict()
    outstr = '|_. Band |_. Footprint |_. Distribution |_. Magnitude Limit |\n'
    template = '|_. %(band)s |{{thumbnail(%(map)s, size=300)}}|{{thumbnail(%(hist)s, size=300)}}|_. %(maglim)s |\n'
     
    for b in BANDS: