Пример #1
0
def test_drift_abnormal_input(data, exception):
    '''
    test drift raises correct exceptions on abnormal input
    '''
    model = b.Drift()
    with pytest.raises(exception):
        model.fit(data)
Пример #2
0
def test_drift_fit_predict(data, horizon, expected):
    '''
    test the correct number of error metric functions are returned.
    '''
    model = b.Drift()
    # fit_predict for point forecasts only
    preds = model.fit_predict(pd.Series(data), horizon)
    assert len(preds) == expected
Пример #3
0
def test_drift_call_predict_before_fit():
    '''
    test Drift raises correct exceptions when
    predict is called before fit
    '''
    model = b.Drift()
    with pytest.raises(UnboundLocalError):
        model.predict(10)
Пример #4
0
def test_drift_forecast_horizon(data, horizon, expected):
    '''
    test the correct number of error metric functions are returned.
    '''
    model = b.Drift()
    model.fit(np.array(data))
    # point forecasts only
    preds = model.predict(horizon)
    assert len(preds) == expected
Пример #5
0
def test_drift_forecast_output_longer_horizon(data, period, expected):
    '''
    test drift forecast predictions
    '''
    model = b.Drift()
    model.fit(data)
    # point forecasts only
    preds = model.predict(period)
    assert np.array_equal(preds, expected)
Пример #6
0
def test_drift_pi_horizon(data, horizon, alpha, expected):
    '''
    test the correct forecast horizon is returned for prediction
    interval for Drift
    '''
    model = b.Drift()
    model.fit(pd.Series(data))
    # point forecasts only
    _, intervals = model.predict(horizon, return_predict_int=True, alpha=alpha)
    assert len(intervals[0]) == expected
Пример #7
0
def test_drift_fitted_values_length(training_length):
    '''
    test drift .fittedvalues
    '''
    np.random.seed(1066)
    train = np.random.poisson(lam=50, size=training_length)

    model = b.Drift()
    model.fit(train)

    expected = training_length

    assert len(model.fittedvalues) == expected
Пример #8
0
def test_drift_fitted_values_nan_length():
    '''
    test Drift .fittedvalues has the correct number of NaNs
    i.e. = 1
    '''
    np.random.seed(1066)
    train = np.random.poisson(lam=50, size=200)

    model = b.Drift()
    model.fit(train)

    expected = 1
    n_nan = np.isnan(model.fittedvalues).sum()

    assert n_nan == expected
Пример #9
0
def test_drift_prediction_interval_95_high():
    '''
    test drift 95% lower prediction interval
    intervals are matched from R forecast package
    '''
    np.random.seed(1066)
    train = np.random.poisson(lam=50, size=100)
    # low = [22.2100359, 13.2828923, 6.2277574, 0.1124247, -5.4196405]
    high = [63.70916, 72.55549, 79.52982, 85.56434, 91.01560]

    # quarterly data
    model = b.Drift()
    model.fit(train)
    _, intervals = model.predict(5, return_predict_int=True, alpha=[0.05])

    print(intervals[0].T[1])
    # not ideal due to not adjusting for drift i think,
    assert pytest.approx(intervals[0].T[1], rel=1e-6, abs=1.2) == high
Пример #10
0
    '''
    model = b.Average()
    model.fit(pd.Series(data))
    # point forecasts only
    _, intervals = model.predict(horizon, return_predict_int=True, alpha=alpha)
    assert len(intervals[0]) == expected


@pytest.mark.parametrize(
    "model, data, horizon, alpha, expected",
    [(b.Naive1(), [1, 2, 3, 4, 5], 12, [0.2, 0.05], 2),
     (b.Naive1(), [1, 2, 3, 4, 5], 24, [0.2, 0.10, 0.05], 3),
     (b.SNaive(1), [1, 2, 3], 8, [0.8], 1),
     (b.SNaive(1), [1, 2, 3, 4, 5], 24, [0.2, 0.10, 0.05], 3),
     (b.Naive1(), [1, 2, 3], 8, None, 2), (b.SNaive(1), [1, 2, 3], 8, None, 2),
     (b.Average(), [1, 2, 3], 8, None, 2), (b.Drift(), [1, 2, 3], 8, None, 2),
     (b.Drift(), [1, 2, 3], 8, [0.8], 1), (b.Drift(), [1, 2, 3], 8, None, 2),
     (b.Average(), [1, 2, 3, 4, 5], 24, [0.2, 0.10, 0.05], 3)])
def test_naive_pi_set_number(model, data, horizon, alpha, expected):
    '''
    test the correct number of Prediction intervals are
    returned for prediction interval for all Naive forecasting classes
    '''
    model.fit(pd.Series(data))
    # point forecasts only
    _, intervals = model.predict(horizon, return_predict_int=True, alpha=alpha)
    assert len(intervals) == expected


@pytest.mark.parametrize("data, period, expected",
                         [(np.arange(1, 7), 6, np.arange(7, 13)),