Пример #1
0
def generate(dataset_size, resolution=40):
    '''
    Create a tensorflow dataset where the features are thermal conductivity parameters
    and the labels are the differences in the quantity of interest between the high 
    fidelity model and the reduced order model (this is the ROM error)

    Arguments: 
        dataset_size - number of feature-label pairs
        resolution   - finite element mesh resolution for the high fidelity model

    Returns:
        dataset      - Tensorflow dataset created from tensor slices
    '''

    V = get_space(resolution)
    dofs = len(V.dofmap().dofs())

    # TODO: Improve this by using mass matrix covariance. Bayesian prior may work well too
    z_s = np.random.uniform(0.1, 1, (dataset_size, dofs))
    phi = np.loadtxt('data/basis.txt', delimiter=",")
    solver = Fin(V)
    errors = np.zeros((dataset_size, 1))

    m = Function(V)
    for i in range(dataset_size):
        m.vector().set_local(z_s[i, :])
        w, y, A, B, C = solver.forward(m)
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        errors[i][0] = y - y_r

    dataset = tf.data.Dataset.from_tensor_slices((z_s, errors))

    return dataset
Пример #2
0
class FinInput:
    '''
    A class to create a thermal fin instance with Tensorflow input functions
    '''
    def __init__(self, batch_size, resolution):
        self.resolution = resolution
        self.V = get_space(resolution)
        self.dofs = len(self.V.dofmap().dofs())
        self.phi = np.loadtxt('data/basis_five_param.txt', delimiter=",")
        self.batch_size = batch_size
        self.solver = Fin(self.V)

    def train_input_fn(self):
        params = np.random.uniform(0.1, 1, (self.batch_size, self.dofs))
        errors = np.zeros((self.batch_size, 1))

        for i in range(self.batch_size):
            m = Function(self.V)
            m.vector().set_local(params[i, :])
            w, y, A, B, C = self.solver.forward(m)
            psi = np.dot(A, self.phi)
            A_r, B_r, C_r, x_r, y_r = self.solver.reduced_forward(
                A, B, C, psi, self.phi)
            errors[i][0] = y - y_r

        return ({
            'x': tf.convert_to_tensor(params)
        }, tf.convert_to_tensor(errors))

    def eval_input_fn(self):
        params = np.random.uniform(0.1, 1, (self.batch_size, self.dofs))
        errors = np.zeros((self.batch_size, 1))

        for i in range(self.batch_size):
            m = Function(self.V)
            m.vector().set_local(params[i, :])
            w, y, A, B, C = self.solver.forward(m)
            psi = np.dot(A, self.phi)
            A_r, B_r, C_r, x_r, y_r = self.solver.reduced_forward(
                A, B, C, psi, self.phi)
            errors[i][0] = y - y_r

        return ({
            'x': tf.convert_to_tensor(params)
        }, tf.convert_to_tensor(errors))
Пример #3
0
def generate_and_save_dataset(dataset_size, resolution=40):
    V = get_space(resolution)
    dofs = len(V.dofmap().dofs())
    z_s = np.random.uniform(0.1, 1, (dataset_size, dofs))
    phi = np.loadtxt('data/basis.txt', delimiter=",")
    solver = Fin(V)
    errors = np.zeros((dataset_size, 1))

    m = Function(V)
    for i in range(dataset_size):
        m.vector().set_local(z_s[i, :])
        w, y, A, B, C = solver.forward(m)
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        errors[i][0] = y - y_r

    np.savetxt('data/z_s_train.txt', z_s, delimiter=",")
    np.savetxt('data/errors_train.txt', errors, delimiter=",")
Пример #4
0
        + Rectangle(Point(0.0, 2.75), Point(2.5, 3.0)) \
        + Rectangle(Point(0.0, 3.75), Point(2.5, 4.0)) \
        + Rectangle(Point(3.5, 0.75), Point(6.0, 1.0)) \
        + Rectangle(Point(3.5, 1.75), Point(6.0, 2.0)) \
        + Rectangle(Point(3.5, 2.75), Point(6.0, 3.0)) \
        + Rectangle(Point(3.5, 3.75), Point(6.0, 4.0)) \

mesh = generate_mesh(geometry, 40)
plot(mesh)
plt.show()

V = FunctionSpace(mesh, 'CG', 1)
dofs = len(V.dofmap().dofs())
print("DOFS: {}".format(dofs))

# Pick a more interesting conductivity to see what happens
#  m = Function(V)

#  m = interpolate(Expression("2.0*exp(-(pow(x[0] - 0.5, 2) + pow(x[1]-0.5, 2)) / 0.02)", degree=2), V)
m = interpolate(Expression("5- x[1]", degree=2), V)
solver = Fin(V)
w = solver.forward(m)[0]
fig = plt.figure()
p = plot(m, title="Conductivity")
plt.colorbar(p)
plt.show()
plt.figure()
p = plot(w, title="Temperature")
plt.colorbar(p)
plt.show()
Пример #5
0
        + Rectangle(Point(0.0, 2.75), Point(2.5, 3.0)) \
        + Rectangle(Point(0.0, 3.75), Point(2.5, 4.0)) \
        + Rectangle(Point(3.5, 0.75), Point(6.0, 1.0)) \
        + Rectangle(Point(3.5, 1.75), Point(6.0, 2.0)) \
        + Rectangle(Point(3.5, 2.75), Point(6.0, 3.0)) \
        + Rectangle(Point(3.5, 3.75), Point(6.0, 4.0)) \

mesh = generate_mesh(geometry, 40)

V = FunctionSpace(mesh, 'CG', 1)
dofs = len(V.dofmap().dofs())
f = Fin(V)

basis = np.loadtxt('data/basis.txt', delimiter=",")
m = interpolate(Expression("2*x[1] + 1.0", degree=2), V)
w, y, A, B, C = f.forward(m, V)
p = plot(m, title="Conductivity")
plt.colorbar(p)
plt.show()
p = plot(w, title="Temperature")
plt.colorbar(p)
plt.show()
A_r, B_r, C_r, x_r, y_r = f.reduced_forward(A, B, C, np.dot(A, basis), basis)
x_tilde = np.dot(basis, x_r)
x_tilde_f = Function(V)
x_tilde_f.vector().set_local(x_tilde)
p = plot(x_tilde_f, title="Temperature reduced")
plt.colorbar(p)
plt.show()

print("Reduced system error: {}".format(np.linalg.norm(y - y_r)))
Пример #6
0
            Expression(
                "0.1 + exp(-(pow(x[0] - 0.5, 2) + pow(x[1], 2)) / 0.01)",
                degree=2), V)
    elif i == 1:
        m = interpolate(Expression("2*x[0] + 0.1", degree=2), V)
    elif i == 2:
        m = interpolate(Expression("1 + sin(x[0])* sin(x[0])", degree=2), V)
    elif i == 3:
        m = interpolate(Expression("1 + sin(x[1])* sin(x[1])", degree=2), V)
    elif i == 4:
        m = interpolate(Expression("1 + sin(x[0])* sin(x[1])", degree=2), V)
    else:
        m = Function(V)
        m.vector().set_local(np.random.uniform(0.1, 10.0, dofs))

    w = solver.forward(m)[0]
    Y[i, :] = w.vector()[:]

K = np.dot(Y, Y.T)

# Initial basis vectors computed using proper orthogonal decomposition
e, v = np.linalg.eig(K)

basis_size = 5
U = np.zeros((basis_size, dofs))
for i in range(basis_size):
    e_i = v[:, i].real
    U[i, :] = np.sum(np.dot(np.diag(e_i), Y), 0)

basis = U.T
                                          (1, len(state_obs_test)))
                                  })
        if run_options.use_full_domain_data == 1 or run_options.use_bnd_data == 1:  # No state prediction if the truncation layer only consists of the observations
            state_pred = sess.run(NN.encoded,
                                  feed_dict={
                                      NN.parameter_input_tf:
                                      parameter_test.reshape(
                                          (1, len(parameter_test)))
                                  })

        ##############
        #  Plotting  #
        ##############
        #=== Plotting test parameter and test state ===#
        parameter_test_dl = solver.nine_param_to_function(parameter_test.T)
        state_test_dl, _ = solver.forward(
            parameter_test_dl)  # generate true state for comparison
        state_test = state_test_dl.vector().get_local()

        p_test_fig = dl.plot(parameter_test_dl)
        p_test_fig.ax.set_title('True Parameter', fontsize=18)
        plt.savefig(run_options.figures_savefile_name_parameter_test, dpi=300)
        print('Figure saved to ' +
              run_options.figures_savefile_name_parameter_test)
        plt.show()

        s_test_fig = dl.plot(state_test_dl)
        s_test_fig.ax.set_title('True State', fontsize=18)
        plt.savefig(run_options.figures_savefile_name_state_test, dpi=300)
        print('Figure saved to ' +
              run_options.figures_savefile_name_state_test)
        plt.show()