def __init__(self, root_folder, type, input_type, split_filename='', transform_color=None, transform_depth=None, img_res=None, crop_res=None, for_autoencoding=False, fpa_subj_split=False, fpa_obj_split=False): super(FPADatasetPoseRegressionFromVQVAE, self).__init__(root_folder, type, input_type, transform_color=transform_color, transform_depth=transform_depth, img_res=img_res, split_filename=split_filename, for_autoencoding=for_autoencoding) self.fpa_subj_split = fpa_subj_split self.fpa_obj_split = fpa_obj_split if split_filename == '': fpa_io.create_split_file(self.root_folder, self.video_folder, perc_train=0.7, perc_valid=0.15, only_with_obj_pose=False, fpa_subj_split=fpa_subj_split, fpa_obj_split=fpa_obj_split, split_filename='fpa_split_subj.p') self.split_filename = self.default_split_filename self.dataset_split = fpa_io.load_split_file(self.root_folder, self.split_filename)
def __init__(self, root_folder, type, input_type, transform_color=None, transform_depth=None, img_res=None, crop_res=None, split_filename='', for_autoencoding=False): super(FPADatasetTracking, self).__init__(root_folder, type, input_type, transform_color=transform_color, transform_depth=transform_depth, img_res=img_res, crop_res=crop_res, split_filename=split_filename, for_autoencoding=for_autoencoding) if not crop_res is None: self.crop_res = crop_res if self.split_filename == '': fpa_io.create_split_file(self.root_folder, self.video_folder, perc_train=0.7, perc_valid=0.15) else: self.dataset_split = fpa_io.load_split_file( self.root_folder, self.split_filename)
def __init__(self, root_folder, type, transform=None, img_res=None, split_filename=''): self.root_folder = root_folder self.transform = transform self.img_res = img_res self.split_filename = split_filename self.type = type if self.split_filename == '': fpa_io.create_split_file(self.root_folder, self.gt_folder, num_train_seq=2, actions=None) else: self.dataset_tuples = fpa_io.load_split_file( self.root_folder, self.split_filename)
def __init__(self, params_dict): super(FPADatasetObjRGBReconstruction, self).\ __init__(params_dict['root_folder'], split_filename=params_dict['split_filename'], img_res=params_dict['img_res']) self.params_dict = params_dict # create or load dataset split if params_dict['split_filename'] == '': fpa_io.create_split_file( params_dict['dataset_root_folder'], perc_train=0.8, perc_valid=0., only_with_obj_pose=True, fpa_subj_split=False, fpa_obj_split=False, split_filename=params_dict['split_filename']) self.dataset_split = fpa_io.load_split_file(self.root_folder, self.split_filename) self.type = params_dict['type'] self.unnormalize = UnNormalize(self.transform.transforms[-1].mean, self.transform.transforms[-1].std, img=True)
parser.add_argument('--fpa-obj-split', default=False, action='store_true', help='Whether to use the FPA paper cross-object split') parser.add_argument('--all', default=False, action='store_true', help='Create all splits') args = parser.parse_args() if args.all: fpa_io.create_split_file(args.dataset_root_folder, args.video_folder, perc_train=0.7, perc_valid=0.15, only_with_obj_pose=False, fpa_subj_split=True, fpa_obj_split=False) fpa_io.create_split_file(args.dataset_root_folder, args.video_folder, perc_train=0.7, perc_valid=0.15, only_with_obj_pose=False, fpa_subj_split=False, fpa_obj_split=True) fpa_io.create_split_file(args.dataset_root_folder, args.video_folder, perc_train=0.7, perc_valid=0.15, only_with_obj_pose=False,
myprint("\tSaving a checkpoint...", log_filepath) torch.save(state, filename) loss_function = nn.NLLLoss() actions = [ 'charge_cell_phone', 'clean_glasses', 'close_juice_bottle', 'close_liquid_soap', 'close_milk', 'close_peanut_butter', 'drink_mug', 'flip_pages', 'flip_sponge', 'give_card' ] fpa_io.create_split_file(args.dataset_root_folder, args.gt_folder, num_train_seq=2, actions=[ 'charge_cell_phone', 'clean_glasses', 'close_juice_bottle', 'close_liquid_soap', 'close_milk' ]) dataset_tuples = fpa_io.load_split_file(args.dataset_root_folder) lstm_baseline = LSTMBaseline(num_joints=21, num_actions=dataset_tuples['num_actions'], use_cuda=args.use_cuda) if args.use_cuda: lstm_baseline = lstm_baseline.cuda() optimizer = optim.Adadelta(lstm_baseline.parameters(), rho=0.9,