def create_new_vasp_run(self, path, structure):
        """
		Creates a static force calculation at path using structure as the initial structure and self.vasp_run_inputs as the run inputs.
		"""

        run_inputs = copy.deepcopy(self.vasp_run_inputs)

        if 'submission_node_count' in run_inputs:
            node_count = run_inputs.pop('submission_node_count')
        else:
            node_count = None

        kpoints = Kpoints(
            scheme_string=run_inputs.pop('kpoint_scheme'),
            subdivisions_list=run_inputs.pop('kpoint_subdivisions_list'))
        incar = IncarMaker.get_static_incar(run_inputs)

        input_set = VaspInputSet(structure,
                                 kpoints,
                                 incar,
                                 auto_change_lreal=('lreal' not in run_inputs),
                                 auto_change_npar=('npar' not in run_inputs))

        if node_count != None:
            input_set.set_node_count(node_count)

            if 'npar' not in run_inputs:
                input_set.set_npar_from_number_of_cores()

        vasp_run = VaspRun(path=path,
                           input_set=input_set,
                           wavecar_path=self.wavecar_path)
	def get_next_incar(self):
		"""
		Returns the incar corresponding to the next run in the relaxation set
		"""

		incar_modifications_dict = {} #will look like {'ediff':base_ediff, 'encut':encut, ...}
		for key, value_list in self.incar_modifier_lists_dictionary.items():
			incar_modifications_dict[key] = value_list[self.run_count]

		if self.run_count < self.external_relaxation_count:
			incar = IncarMaker.get_external_relaxation_incar(incar_modifications_dict)
		else:
			incar = IncarMaker.get_static_incar(incar_modifications_dict)

			if self.static_lwave:
				incar['lwave'] = True

		return incar
	def create_new_vasp_run(self, path, structure):
		"""
		Creates a static force calculation at path using structure as the initial structure and self.vasp_run_inputs as the run inputs.
		"""

		kpoints = Kpoints(scheme_string=self.vasp_run_inputs['kpoint_scheme'], subdivisions_list=self.vasp_run_inputs['kpoint_subdivisions_list'])
		incar = IncarMaker.get_accurate_forces_incar()
		incar['encut'] = self.vasp_run_inputs['encut']

		if 'npar' in self.vasp_run_inputs:
			incar['npar'] = self.vasp_run_inputs['npar']
			auto_change_npar = False
		else:
			auto_change_npar = True

		input_set = VaspInputSet(structure, kpoints, incar, auto_change_lreal=False, auto_change_npar=auto_change_npar)

		vasp_run = VaspRun(path=path, input_set=input_set, wavecar_path=self.wavecar_path)
Пример #4
0
def encut_converger(base_path, structure, encut_list, base_kpoints_scheme, base_kpoints_subdivisions_list, base_ediff):
    """Takes in a structure, set of encuts, and base params and runs set in base_path""" 
    encut_convergence_set_path = Path.clean(base_path)
    Path.make(encut_convergence_set_path)
    
    for encut in encut_list:
        run_path = Path.join(encut_convergence_set_path, str(encut))
        
        kpoints = Kpoints(scheme_string=base_kpoints_scheme, subdivisions_list=base_kpoints_subdivisions_list)
        incar = IncarMaker.get_static_incar({'ediff':base_ediff, 'encut':encut})
        input_set = VaspInputSet(structure, kpoints, incar)
        
        vasp_run = VaspRun(run_path, input_set=input_set, verbose=False)
        
        if vasp_run.update():
            print encut, round(vasp_run.outcar.energy_per_atom, 5), round(vasp_run.outcar.get_calculation_time_in_core_hours(), 2)
        else:
            pass
    def get_energy_of_eigen_chromosome(self, path, eigen_chromosome):

        # print "chrom " + str(eigen_chromosome)

        structure = self.get_distorted_structure_from_eigen_chromosome(
            eigen_chromosome)

        run_inputs = copy.deepcopy(self.vasp_run_inputs_dictionary)

        if 'submission_node_count' in run_inputs:
            node_count = run_inputs.pop('submission_node_count')
        else:
            node_count = None

        kpoints = Kpoints(
            scheme_string=run_inputs.pop('kpoint_scheme'),
            subdivisions_list=run_inputs.pop('kpoint_subdivisions_list'))
        incar = IncarMaker.get_static_incar(run_inputs)

        input_set = VaspInputSet(structure,
                                 kpoints,
                                 incar,
                                 auto_change_lreal=('lreal' not in run_inputs),
                                 auto_change_npar=('npar' not in run_inputs))

        if node_count != None:
            input_set.set_node_count(node_count)

            if 'npar' not in run_inputs:
                input_set.set_npar_from_number_of_cores()

        vasp_run = VaspRun(
            path=path,
            input_set=input_set,
            wavecar_path=self.reference_completed_vasp_relaxation_run.
            get_wavecar_path())

        vasp_run.update()

        if vasp_run.complete:
            vasp_run.delete_wavecar_if_complete()
            return vasp_run.get_final_energy(per_atom=False)
        else:
            return None
Пример #6
0
    def initialize_vasp_lepsilon_calculation(self):
        """
		Sets up a run for the calculation of dielectric and born effective charge tensors. This is necessary if the Non-Analytical correction is used (for polar materials).
		"""

        kpoints = Kpoints(
            scheme_string=self.vasp_run_inputs['kpoint_scheme'],
            subdivisions_list=[
                self.vasp_run_inputs['kpoint_subdivisions_list'][i] *
                self.phonopy_inputs['supercell_dimensions'][i]
                for i in range(3)
            ])
        incar = IncarMaker.get_lepsilon_incar()
        incar['encut'] = self.vasp_run_inputs['encut']

        input_set = VaspInputSet(self.initial_structure,
                                 kpoints,
                                 incar,
                                 auto_change_npar=False)

        self.lepsilon_calculation = VaspRun(
            path=self.get_lepsion_calculation_path(), input_set=input_set)
Пример #7
0
def kpoints_converger(base_path, structure, kpoints_lists, base_kpoints_scheme, base_encut, base_ediff, incar_modification_dictionary=None):
    convergence_set_path = Path.clean(base_path)
    Path.make(convergence_set_path)

    for kpoints_list in kpoints_lists:
        run_path = Path.join(convergence_set_path, "_".join(str(kpoints) for kpoints in kpoints_list))

        kpoints = Kpoints(scheme_string=base_kpoints_scheme, subdivisions_list=kpoints_list)
        incar_mod = {'ediff':base_ediff, 'encut':base_encut}
        
        if incar_modification_dictionary:
            for key, value in incar_modification_dictionary.items():
                incar_mod[key] = value
                
        incar = IncarMaker.get_static_incar(incar_mod)
        
        input_set = VaspInputSet(structure, kpoints, incar)

        vasp_run = VaspRun(run_path, input_set=input_set, verbose=False)

        if vasp_run.update():
            print "_".join(str(kpoints) for kpoints in kpoints_list), round(vasp_run.outcar.energy_per_atom, 5), round(vasp_run.outcar.get_calculation_time_in_core_hours(), 2)
        else:
            vasp_run.view(['kpoints','_job_output.txt'])
Пример #8
0

relaxation = VaspRelaxation(path=Path.join(base_path, 'relaxation'), initial_structure=initial_structure, input_dictionary=initial_relaxation_input_dictionary)


if not relaxation.complete:
	relaxation.update()
else:
	
	relaxed_structure = relaxation.final_structure


	force_calculation_path = Path.join(base_path, 'dfpt_force_calculation')

	kpoints = Kpoints(scheme_string=kpoint_scheme, subdivisions_list=kpoint_subdivisions_list)
	incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)
	input_set = VaspInputSet(relaxed_structure, kpoints, incar, auto_change_lreal=False, auto_change_npar=False)

	dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

	if not dfpt_force_run.complete:
		dfpt_force_run.update()


	else:

		hessian = Hessian(dfpt_force_run.outcar)
		#hessian.print_eigen_components()
		hessian.print_eigenvalues()

def term_acceptance_function(expansion_term):

	variables = expansion_term.get_active_variables()

	if not expansion_term.is_pure_type('strain')

	#remove all terms with in-plane strain variables in them - these are fixed to 0 for (100) epitaxy
	for variable in variables:
		if variable.type_string == 'strain' and variable.index in [0, 1, 5]:
			return False

	#assume no forces or stresses on the cell
	if expansion_term.order == 1: 
		return False

	#only expand to second order w.r.t. strain
	if expansion_term.is_pure_type('strain') and expansion_term.order > 2:
		return False

	#for perovskite structure under arbitrary homogeneous strain, displacement terms are centrosymmetric
	if expansion_term.is_centrosymmetric():
		return False

	#only go to fourth order in single variable dsiplacement terms - don't do fourth order cross terms
	if expansion_term.order == 4 and not expansion_term.has_single_variable():
		return False

	return True


taylor_expansion = TaylorExpansion(variables_list=variables, term_acceptance_function=term_acceptance_function)

print
print "Number of terms:", len(taylor_expansion)


print '\n\t\t',
print taylor_expansion
print '\n'*3




base_path = "./"


perturbation_magnitudes_dictionary = {'strain': 0.01, 'displacement': 0.2}


a = 3.79
Nx = 1
Ny = 1
Nz = 1

vasp_run_inputs_dictionary = {
	'kpoint_scheme': 'Monkhorst',
	'kpoint_subdivisions_list': [8, 8, 8],
	'encut': 900,
	'addgrid': True
}

relaxation_input_dictionary= {
    'external_relaxation_count': 3,
    'isif': [6],
    'kpoint_schemes_list': [vasp_run_inputs_dictionary['kpoint_scheme']],
    'kpoint_subdivisions_lists': [vasp_run_inputs_dictionary['kpoint_subdivisions_list']],
    'ediff': [0.00001, 1e-7, 1e-9],
    'encut': [vasp_run_inputs_dictionary['encut']],
    'submission_script_modification_keys_list': ['100'],
    'lwave': [True]
}


initial_structure=Perovskite(supercell_dimensions=[Nx, Ny, Nz], lattice=[[a*Nx, 0.0, 0.0], [0.0, a*Ny, 0.0], [0.0, 0.0, a*Nz*1.02]], species_list=['Sr', 'Ti', 'O'])


relaxation = VaspRelaxation(path=Path.join(base_path, 'relaxation'), initial_structure=initial_structure, input_dictionary=relaxation_input_dictionary)


if not relaxation.complete:
	relaxation.update()
else:
	
	relaxed_structure = relaxation.final_structure

	force_calculation_path = Path.join(base_path, 'dfpt_force_calculation')

	kpoints = Kpoints(scheme_string=vasp_run_inputs_dictionary['kpoint_scheme'], subdivisions_list=vasp_run_inputs_dictionary['kpoint_subdivisions_list'])
	incar = IncarMaker.get_dfpt_hessian_incar({'encut': vasp_run_inputs_dictionary['encut']})

	input_set = VaspInputSet(relaxed_structure, kpoints, incar, auto_change_lreal=False, auto_change_npar=False)

	dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

	if not dfpt_force_run.complete:
		dfpt_force_run.update()
	else:

		hessian = Hessian(dfpt_force_run.outcar)

		eigen_structure = EigenStructure(reference_structure=relaxed_structure, hessian=hessian)
		eigen_structure.print_eigen_components()



		de_path = Path.join(base_path, 'term_coefficient_calculations')
		derivative_evaluator = DerivativeEvaluator(path=de_path, reference_structure=relaxed_structure, hessian=hessian, taylor_expansion=taylor_expansion, 
			reference_completed_vasp_relaxation_run=relaxation, vasp_run_inputs_dictionary=vasp_run_inputs_dictionary, perturbation_magnitudes_dictionary=perturbation_magnitudes_dictionary)

		derivative_evaluator.update()

		print derivative_evaluator.taylor_expansion
def run_misfit_strain(path, misfit_strain, input_dictionary,
                      initial_relaxation_input_dictionary, dfpt_incar_settings,
                      derivative_evaluation_vasp_run_inputs_dictionary,
                      minima_relaxation_input_dictionary,
                      epitaxial_relaxation_input_dictionary):

    Path.make(path)
    guessed_minima_data_path = Path.join(path, 'guessed_chromosomes')

    species_list = input_dictionary['species_list']
    reference_lattice_constant = input_dictionary['reference_lattice_constant']
    Nx = input_dictionary['supercell_dimensions_list'][0]
    Ny = input_dictionary['supercell_dimensions_list'][1]
    Nz = input_dictionary['supercell_dimensions_list'][2]
    displacement_finite_differences_step_size = input_dictionary[
        'displacement_finite_differences_step_size']
    perturbation_magnitudes_dictionary = input_dictionary[
        'perturbation_magnitudes_dictionary']

    a = reference_lattice_constant * (1.0 + misfit_strain)

    initial_structure = Perovskite(
        supercell_dimensions=[Nx, Ny, Nz],
        lattice=[[a * Nx, 0.0, 0.0], [0.0, a * Ny, 0.0],
                 [
                     0.0, 0.0, reference_lattice_constant * Nz *
                     (1.0 + 0.3 * (1.0 - (a / reference_lattice_constant)))
                 ]],
        species_list=species_list)
    relaxation = VaspRelaxation(
        path=Path.join(path, 'relaxation'),
        initial_structure=initial_structure,
        input_dictionary=initial_relaxation_input_dictionary)

    if not relaxation.complete:
        relaxation.update()
        return False

    relaxed_structure = relaxation.final_structure

    relaxed_structure_path = Path.join(path, 'output_relaxed_structure')
    relaxed_structure.to_poscar_file_path(relaxed_structure_path)

    force_calculation_path = Path.join(path, 'dfpt_force_calculation')

    kpoints = Kpoints(scheme_string=kpoint_scheme,
                      subdivisions_list=kpoint_subdivisions_list)
    incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)
    input_set = VaspInputSet(relaxed_structure,
                             kpoints,
                             incar,
                             auto_change_lreal=False,
                             auto_change_npar=False)
    input_set.incar['lepsilon'] = True

    dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

    if not dfpt_force_run.complete:
        dfpt_force_run.update()
        return False

    hessian = Hessian(dfpt_force_run.outcar)

    if input_dictionary['write_hessian_data']:
        hessian.print_eigenvalues_to_file(
            Path.join(path, 'output_eigen_values'))
        hessian.print_eigen_components_to_file(
            Path.join(path, 'output_eigen_components'))
        hessian.print_mode_effective_charge_vectors_to_file(
            Path.join(path, 'output_mode_effective_charge_vectors'),
            relaxed_structure)

        eigen_structure = EigenStructure(reference_structure=relaxed_structure,
                                         hessian=hessian)

        mode_structures_path = Path.join(path, 'mode_rendered_structures')
        Path.make(mode_structures_path)

        mode_charge_file = File(
            Path.join(path, 'output_mode_effective_charge_vectors'))

        sorted_eigen_pairs = hessian.get_sorted_hessian_eigen_pairs_list()
        for i, structure in enumerate(
                eigen_structure.get_mode_distorted_structures_list(
                    amplitude=0.6)):
            if i > 30:
                break
            structure.to_poscar_file_path(
                Path.join(
                    mode_structures_path, 'u' + str(i + 1) + '_' +
                    str(round(sorted_eigen_pairs[i].eigenvalue, 2)) + '.vasp'))

            structure.lattice = Lattice([[8.0, 0.0, 0.0], [0.0, 8.0, 0.0],
                                         [0.0, 0.0, 8.0]])

            mode_charge_file[i] += '    ' + structure.get_spacegroup_string(
                symprec=0.2) + '  ' + structure.get_spacegroup_string(
                    symprec=0.1) + '  ' + structure.get_spacegroup_string(
                        symprec=0.001)

        mode_charge_file.write_to_path()
    #sys.exit()

    ################################################### random structure searcher
    if True:
        rand_path = Path.join(path, 'random_trials')
        Path.make(rand_path)

        num_guesses = 1
        num_modes = 12
        max_amplitude = 0.6

        if misfit_strain == 0.02:
            eigen_structure = EigenStructure(
                reference_structure=relaxed_structure, hessian=hessian)

            for i in range(num_guesses):
                trial_path = Path.join(rand_path, str(i))

                if not Path.exists(trial_path):
                    initial_structure_trial = eigen_structure.get_random_structure(
                        mode_count_cutoff=num_modes,
                        max_amplitude=max_amplitude)
                    trial_relaxation = VaspRelaxation(
                        path=trial_path,
                        initial_structure=initial_structure_trial,
                        input_dictionary=minima_relaxation_input_dictionary)
                else:
                    trial_relaxation = VaspRelaxation(path=trial_path)

                print "Updating random trial relaxation at " + trial_relaxation.path + "  Status is " + trial_relaxation.get_status_string(
                )
                trial_relaxation.update()

                if trial_relaxation.complete:
                    print "Trial " + str(i)
                    print trial_relaxation.get_data_dictionary()

        return None
    ###################################################

    if not Path.exists(guessed_minima_data_path):
        variable_specialty_points_dictionary = input_dictionary[
            'variable_specialty_points_dictionary_set'][
                misfit_strain] if input_dictionary.has_key(
                    misfit_strain) else {}

        derivative_evaluation_path = Path.join(
            path, 'expansion_coefficient_calculations')
        derivative_evaluator = DerivativeEvaluator(
            path=derivative_evaluation_path,
            reference_structure=relaxed_structure,
            hessian=hessian,
            reference_completed_vasp_relaxation_run=relaxation,
            vasp_run_inputs_dictionary=
            derivative_evaluation_vasp_run_inputs_dictionary,
            perturbation_magnitudes_dictionary=
            perturbation_magnitudes_dictionary,
            displacement_finite_differences_step_size=
            displacement_finite_differences_step_size,
            status_file_path=Path.join(path, 'output_derivative_plot_data'),
            variable_specialty_points_dictionary=
            variable_specialty_points_dictionary,
            max_displacement_variables=input_dictionary[
                'max_displacement_variables'])

        derivative_evaluator.update()

    else:
        minima_path = Path.join(path, 'minima_relaxations')

        minima_relaxer = MinimaRelaxer(
            path=minima_path,
            reference_structure=relaxed_structure,
            reference_completed_vasp_relaxation_run=relaxation,
            hessian=hessian,
            vasp_relaxation_inputs_dictionary=
            minima_relaxation_input_dictionary,
            eigen_chromosome_energy_pairs_file_path=guessed_minima_data_path,
            log_base_path=path,
            max_minima=input_dictionary['max_minima'])

        minima_relaxer.update()
        minima_relaxer.print_status_to_file(
            Path.join(path, 'output_minima_relaxations_status'))

        if minima_relaxer.complete:
            print "Minima relaxer complete: sorting the relaxations to find the lowest energy structure."
            #minima_relaxer.print_selected_uniques_to_file(file_path=Path.join(path, 'output_selected_unique_minima_relaxations'))
            sorted_uniques = minima_relaxer.get_sorted_unique_relaxation_data_list(
            )

            return sorted_uniques
Пример #11
0
    def __init__(self, vasp_calculation_input_dictionary):

        vasp_calculation_input_dictionary = copy.deepcopy(
            vasp_calculation_input_dictionary)

        vasp_calculation_input_dictionary = {
            k.lower(): v
            for k, v in vasp_calculation_input_dictionary.items()
        }  #enforce all keys lowercase

        path = Path.clean(vasp_calculation_input_dictionary.pop('path'))

        information_structure = None  #used for number of nodes and potcar
        if isinstance(vasp_calculation_input_dictionary['structure'],
                      Structure):
            initial_structure = vasp_calculation_input_dictionary.pop(
                'structure')
            information_structure = initial_structure
            contcar_path = None
        else:
            initial_structure = None
            contcar_path = vasp_calculation_input_dictionary.pop('structure')
            information_structure = Structure(contcar_path)

        wavecar_path = vasp_calculation_input_dictionary.pop(
            'wavecar_path'
        ) if 'wavecar_path' in vasp_calculation_input_dictionary else None
        chargecar_path = vasp_calculation_input_dictionary.pop(
            'chargecar_path'
        ) if 'chargecar_path' in vasp_calculation_input_dictionary else None
        incar_template = vasp_calculation_input_dictionary.pop(
            'incar_template'
        ) if 'incar_template' in vasp_calculation_input_dictionary else None
        kpoints_scheme = vasp_calculation_input_dictionary.pop(
            'kpoints_scheme'
        ) if 'kpoints_scheme' in vasp_calculation_input_dictionary else None
        kpoints_list = [
            int(x) for x in vasp_calculation_input_dictionary.pop(
                'kpoints_list').split(' ')
        ] if ('kpoints_list' in vasp_calculation_input_dictionary
              and vasp_calculation_input_dictionary['kpoints_list'] != None
              ) else None
        potcar_type = vasp_calculation_input_dictionary.pop(
            'potcar_type'
        ) if 'potcar_type' in vasp_calculation_input_dictionary else 'lda_paw'
        vasp_code_type = vasp_calculation_input_dictionary.pop(
            'vasp_code_type'
        ) if 'vasp_code_type' in vasp_calculation_input_dictionary else 'standard'
        node_count = vasp_calculation_input_dictionary.pop(
            'node_count'
        ) if 'node_count' in vasp_calculation_input_dictionary else None
        use_mp_hubbard_u = vasp_calculation_input_dictionary.pop(
            'use_mp_hubbard_u'
        ) if 'use_mp_hubbard_u' in vasp_calculation_input_dictionary else None

        for file_path in [wavecar_path, chargecar_path]:
            if file_path != None and not Path.exists(file_path):
                print "Warning: Path " + str(
                    file_path) + " specified does not exist. Not using."
                #raise Exception("Path " + str(file_path) + " specified does not exist.")

        if kpoints_scheme != None and kpoints_list != None:
            kpoints = Kpoints(scheme_string=kpoints_scheme,
                              subdivisions_list=kpoints_list)

            if 'kspacing' in vasp_calculation_input_dictionary:
                raise Exception(
                    "kpoints are being specified by more than one method.")
        elif 'kspacing' not in vasp_calculation_input_dictionary:
            raise Exception(
                "If kpoints aren't explicitly defined through a scheme and a list, the kspacing tag must be present in the incar."
            )
        else:
            kpoints = None

        potcar = Potcar(elements_list=information_structure.get_species_list(),
                        calculation_type=potcar_type)

        submission_script_file = QueueAdapter.get_submission_file()

        if os.environ['QUEUE_ADAPTER_HOST'] != 'Savio':
            if node_count == None:
                submission_script_file = QueueAdapter.modify_number_of_cores_from_num_atoms(
                    submission_script_file, information_structure.site_count)
            else:
                submission_script_file = QueueAdapter.set_number_of_nodes(
                    submission_script_file, node_count)

            submission_script_file = QueueAdapter.modify_submission_script(
                submission_script_file, modification_key=vasp_code_type)

        incar_modifiers = vasp_calculation_input_dictionary  #whatever is left should only be incar modifiers - we popped all other keys

        for key, value in incar_modifiers.items(
        ):  #make sure there are no None values - these should not be put in INCAR
            if value in [None, 'None']:
                del incar_modifiers[key]

        if 'encut' in incar_modifiers and (
                0.1 < incar_modifiers['encut']) and (
                    incar_modifiers['encut'] <
                    10.0):  #Should use this as a multiplier times enmax
            enmax = potcar.get_enmax()

            incar_modifiers['encut'] = int(incar_modifiers['encut'] * enmax)

        if incar_template == 'static':
            incar = IncarMaker.get_static_incar(
                custom_parameters_dictionary=incar_modifiers)
        elif incar_template == 'external_relaxation':
            incar = IncarMaker.get_external_relaxation_incar(
                custom_parameters_dictionary=incar_modifiers)
        elif incar_template != None:
            raise Exception("Incar template " + str(incar_template) +
                            " not valid")
        else:
            incar = Incar()
            incar.modify_from_dictionary(incar_modifiers)

        if 'lreal' not in incar:
            if information_structure.site_count > 20:
                incar['lreal'] = 'Auto'
            else:
                incar['lreal'] = False

        if 'npar' not in incar:
            if os.environ['QUEUE_ADAPTER_HOST'] == 'Savio':
                incar['npar'] = 4
            else:
                incar['npar'] = QueueAdapter.get_optimal_npar(
                    submission_script_file)
        elif incar['npar'] in ['Remove', 'remove']:
            del incar['npar']

        ###################TEMPORARILY HARDCODED FOR PEROVSKITES##########################################
        if use_mp_hubbard_u:
            u_species = initial_structure.get_species_list()[1]
            mp_hubbard_u_values = {
                'Co': 3.32,
                'Cr': 3.7,
                'Fe': 5.3,
                'Mn': 3.9,
                'Mo': 4.38,
                'Ni': 6.2,
                'V': 3.25,
                'W': 6.2
            }

            if u_species in mp_hubbard_u_values.keys():

                u_value = mp_hubbard_u_values[u_species]

                incar['LDAU'] = True
                incar['LDAUJ'] = '0 0 0'
                incar['LDAUL'] = '0 2 0'
                incar['LDAUPRINT'] = 1
                incar['LDAUTYPE'] = 2
                incar['LDAUU'] = '0 ' + str(u_value) + ' 0'
                incar['LMAXMIX'] = 4
                incar['LORBIT'] = 11

        super(VaspCalculationGenerator,
              self).__init__(path=path,
                             initial_structure=initial_structure,
                             incar=incar,
                             kpoints=kpoints,
                             potcar=potcar,
                             submission_script_file=submission_script_file,
                             contcar_path=contcar_path,
                             wavecar_path=wavecar_path,
                             chargecar_path=chargecar_path)
Пример #12
0
Nx = 2
Ny = 2
Nz = 2



vasp_run_inputs = {
	'kpoint_scheme': 'Monkhorst',
	'kpoint_subdivisions_list': [2, 2, 2],
	}

custom_incar_inputs = {
	'encut': 800
}


initial_structure=Perovskite(supercell_dimensions=[Nx, Ny, Nz], lattice=[[a*Nx, 0.0, 0.0], [0.0, a*Ny, 0.0], [0.0, 0.0, a*Nz]], species_list=['Sr', 'Ti', 'O'])


force_calculation_path = './dfpt_force_calculation'

kpoints = Kpoints(scheme_string=vasp_run_inputs['kpoint_scheme'], subdivisions_list=vasp_run_inputs['kpoint_subdivisions_list'])
incar = IncarMaker.get_dfpt_hessian_incar(custom_incar_inputs)

input_set = VaspInputSet(initial_structure, kpoints, incar, auto_change_lreal=False, auto_change_npar=False)


dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)


dfpt_force_run.update()
def run_misfit_strain(path, misfit_strain, input_dictionary,
                      initial_relaxation_input_dictionary, dfpt_incar_settings,
                      derivative_evaluation_vasp_run_inputs_dictionary,
                      minima_relaxation_input_dictionary,
                      epitaxial_relaxation_input_dictionary):

    Path.make(path)

    species_list = input_dictionary['species_list']
    reference_lattice_constant = input_dictionary['reference_lattice_constant']
    Nx = input_dictionary['supercell_dimensions_list'][0]
    Ny = input_dictionary['supercell_dimensions_list'][1]
    Nz = input_dictionary['supercell_dimensions_list'][2]
    displacement_finite_differrences_step_size = input_dictionary[
        'displacement_finite_differrences_step_size']
    perturbation_magnitudes_dictionary = input_dictionary[
        'perturbation_magnitudes_dictionary']

    a = reference_lattice_constant * (1.0 + misfit_strain)

    initial_structure = Perovskite(
        supercell_dimensions=[Nx, Ny, Nz],
        lattice=[[a * Nx, 0.0, 0.0], [0.0, a * Ny, 0.0],
                 [
                     0.0, 0.0, reference_lattice_constant * Nz *
                     (1.0 + 0.3 * (1.0 - (a / reference_lattice_constant)))
                 ]],
        species_list=species_list)
    relaxation = VaspRelaxation(
        path=Path.join(path, 'relaxation'),
        initial_structure=initial_structure,
        input_dictionary=initial_relaxation_input_dictionary)

    if not relaxation.complete:
        relaxation.update()
        return False

    relaxed_structure = relaxation.final_structure

    relaxed_structure_path = Path.join(path, 'output_relaxed_structure')
    relaxed_structure.to_poscar_file_path(relaxed_structure_path)

    force_calculation_path = Path.join(path, 'dfpt_force_calculation')

    kpoints = Kpoints(scheme_string=kpoint_scheme,
                      subdivisions_list=kpoint_subdivisions_list)
    incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)
    input_set = VaspInputSet(relaxed_structure,
                             kpoints,
                             incar,
                             auto_change_lreal=False,
                             auto_change_npar=False)

    dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

    if not dfpt_force_run.complete:
        dfpt_force_run.update()
        return False

    hessian = Hessian(dfpt_force_run.outcar)
    hessian.print_eigenvalues_to_file(Path.join(path, 'output_eigen_values'))
    hessian.print_eigen_components_to_file(
        Path.join(path, 'output_eigen_components'))

    variable_specialty_points_dictionary = input_dictionary[
        'variable_specialty_points_dictionary_set'][
            misfit_strain] if input_dictionary.has_key(misfit_strain) else {}

    derivative_evaluation_path = Path.join(
        path, 'expansion_coefficient_calculations')
    derivative_evaluator = DerivativeEvaluator(
        path=derivative_evaluation_path,
        reference_structure=relaxed_structure,
        hessian=hessian,
        reference_completed_vasp_relaxation_run=relaxation,
        vasp_run_inputs_dictionary=
        derivative_evaluation_vasp_run_inputs_dictionary,
        perturbation_magnitudes_dictionary=perturbation_magnitudes_dictionary,
        displacement_finite_differrences_step_size=
        displacement_finite_differrences_step_size,
        status_file_path=Path.join(path, 'output_derivative_plot_data'),
        variable_specialty_points_dictionary=
        variable_specialty_points_dictionary)
    derivative_evaluator.update()

    guessed_minima_data_path = Path.join(path, 'guessed_chromosomes')
    minima_path = Path.join(path, 'minima_relaxations')

    if Path.exists(guessed_minima_data_path):
        minima_relaxer = MinimaRelaxer(
            path=minima_path,
            reference_structure=relaxed_structure,
            reference_completed_vasp_relaxation_run=relaxation,
            hessian=hessian,
            vasp_relaxation_inputs_dictionary=
            minima_relaxation_input_dictionary,
            eigen_chromosome_energy_pairs_file_path=guessed_minima_data_path)

        minima_relaxer.update()
        minima_relaxer.print_status_to_file(
            Path.join(path, 'output_minima_relaxations_status'))

        if minima_relaxer.complete:
            minima_relaxer.print_selected_uniques_to_file(file_path=Path.join(
                path, 'output_selected_unique_minima_relaxations'))
            sorted_uniques = minima_relaxer.get_sorted_unique_relaxation_data_list(
            )

            return sorted_uniques
Пример #14
0
    def update(self):
        if not self.relaxation.complete:
            self.relaxation.update()
        else:
            Path.make(self.dos_path)

            dos_runs_count = self.get_current_dos_count()

            incar_modifications = {}
            for key, value_list in self.relaxation.incar_modifier_lists_dictionary.items(
            ):
                incar_modifications[key] = value_list[1000]

            incar = IncarMaker.get_static_incar(incar_modifications)

            if 'submission_node_count' in self.extra_dos_inputs:
                node_count = self.extra_dos_inputs.pop('submission_node_count')
            else:
                node_count = None

            structure = self.relaxation.final_structure
            kpoint_schemes = ParameterList(
                self.extra_dos_inputs.pop('kpoint_schemes_list'))
            kpoint_subdivisions_lists = ParameterList(
                self.extra_dos_inputs.pop('kpoint_subdivisions_lists'))

            kpoints = Kpoints(
                scheme_string=kpoint_schemes[dos_runs_count],
                subdivisions_list=kpoint_subdivisions_lists[dos_runs_count])
            incar = IncarMaker.get_static_incar(incar_modifications)

            for key, value in self.extra_dos_inputs.items():
                incar[key] = value

            if node_count != None:
                input_set.set_node_count(node_count)

            incar['lhfcalc'] = True
            incar['hfscreen'] = 0.2
            incar['lorbit'] = 11

            chargecar_path = None

            if dos_runs_count == 0:
                run_path = Path.join(self.dos_path,
                                     'hybrid_electronic_optimization_1')
                Path.make(run_path)

                wavecar_path = Path.join(self.relaxation.path, 'static',
                                         'WAVECAR')

                incar['algo'] = 'All'
                incar['time'] = 0.4
                incar['precfock'] = 'Fast'
                incar['nkred'] = 2
                incar['ismear'] = 0
                incar['sigma'] = 0.02
                incar['lwave'] = True

            elif dos_runs_count == 1:
                run_path = Path.join(self.dos_path,
                                     'hybrid_electronic_optimization_2')
                Path.make(run_path)

                wavecar_path = Path.join(self.dos_path,
                                         'hybrid_electronic_optimization_1',
                                         'WAVECAR')

                incar['ialgo'] = 53
                incar['time'] = 0.4
                incar['precfock'] = 'Fast'
                incar['nkred'] = 2
                incar['ismear'] = -5
                incar['sigma'] = 0.02
                incar['lwave'] = True
                incar['lcharg'] = True

            elif dos_runs_count >= 2:
                run_path = Path.join(self.dos_path,
                                     'hybrid_electronic_optimization_3')
                Path.make(run_path)

                wavecar_path = Path.join(self.dos_path,
                                         'hybrid_electronic_optimization_2',
                                         'WAVECAR')
                chargecar_path = Path.join(self.dos_path,
                                           'hybrid_electronic_optimization_2',
                                           'CHARGECAR')

                incar['ialgo'] = 53
                incar['time'] = 0.4
                incar['precfock'] = 'Fast'
                incar['nkred'] = 2
                incar['ismear'] = -5
                incar['sigma'] = 0.02
                incar['lwave'] = True
                incar['lcharg'] = True
                incar['icharge'] = 11

            input_set = VaspInputSet(structure,
                                     kpoints,
                                     incar,
                                     calculation_type='gga')

            current_dos_run = VaspRun(path=run_path,
                                      input_set=input_set,
                                      wavecar_path=wavecar_path,
                                      chargecar_path=None)

            current_dos_run.update()