def build_network(deepest=False): dropout = [0., 0.1, 0.2, 0.3, 0.4] conv = [(64, 3, 3), (128, 3, 3), (256, 3, 3), (512, 3, 3), (512, 2, 2)] input = Input(shape=(32, 32, 3)) output = fractal_net( c=3, b=5, conv=conv, drop_path=0.15, dropout=dropout, #drop_path=0.15, dropout=None, deepest=deepest)(input) output = Flatten()(output) #output = Dense(NB_CLASSES, init='he_normal')(output) output = Dense(NB_CLASSES, kernel_initializer='he_normal')(output) output = Activation('softmax')(output) #model = Model(input=input, output=output) model = Model(inputs=input, outputs=output) optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM) #optimizer = RMSprop(lr=LEARN_START) #optimizer = Adam() #optimizer = Nadam() model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) #model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=['accuracy']) #plot(model, to_file='model.png') return model
def build_network(deepest=False): dropout = [0., 0.1, 0.2, 0.3, 0.4] conv = [(64, 3, 3), (128, 3, 3), (256, 3, 3), (512, 3, 3), (512, 2, 2)] input= Input(shape=(3, 32, 32) if K._BACKEND == 'theano' else (32, 32,3)) output = fractal_net( c=3, b=5, conv=conv, drop_path=0.15, dropout=dropout, deepest=deepest)(input) output = Flatten()(output) output = Dense(NB_CLASSES, init='he_normal')(output) output = Activation('softmax')(output) model = Model(input=input, output=output) #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM) #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM, nesterov=True) optimizer = Adam() #optimizer = Nadam() model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) plot(model, to_file='model.png', show_shapes=True) return model
def build_network(deepest = False): dropout = [0., 0., 0., 0., 0.] conv = [(64, 3, 3), (128, 3, 3), (256, 3, 3), (512, 3, 3), (512, 2, 2)] input = Input(shape = (32, 32, 3)) output = fractal_net(c = 3, b = 5, conv = conv, drop_path = 0.15, dropout = dropout, deepest = deepest)(input) output = Flatten()(output) output = Dense(512, kernel_initializer = 'he_normal')(output) output = Activation('relu')(output) output = Dropout(0.25)(output) output = Dense(nb_classes, kernel_initializer = 'he_normal')(output) output = Activation('softmax')(output) model = Model(inputs = input, outputs = output) optimizer = SGD(lr = lr, momentum = 0.9, nesterov = True) # optimizer = Adam() model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics= ['accuracy']) # model.summary() return model
def build_network(deepest=False): dropout = [0., 0.1, 0.2, 0.3, 0.4] conv = [(64, 3, 3), (128, 3, 3), (256, 3, 3), (512, 3, 3), (512, 2, 2)] input = Input(shape=(3, 32, 32)) output = fractal_net(c=3, b=5, conv=conv, drop_path=0.15, dropout=dropout, deepest=deepest)(input) output = Flatten()(output) output = Dense(NB_CLASSES, init='he_normal')(output) output = Activation('softmax')(output) model = Model(input=input, output=output) #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM) #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM, nesterov=True) optimizer = Adam() #optimizer = Nadam() model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) plot(model, to_file='model.png', show_shapes=True) return model
def f(input): return fractal_net(b=b, c=c, conv=b * [(nb_filter, conv_size)], drop_path=drop_path, dropout=b * [dropout])(input)