def write_training_runs(args):

    filer = ExperimentFiler(args.experiment_dir)
    csv_file = filer.experiment_file("training_runs.csv")
    with open(csv_file, 'wb') as my_file:
        my_file.write('Generation, %s, Fitness\n' % resolve_alt_objective(args))

    results_files = get_results_files(args)

    generation_filer = GenerationFiler(args.experiment_dir)
    for results_file in results_files:
        generation = generation_filer.get_generation_from_path(results_file)
        persistence = ResultsDictPersistence(args.experiment_dir, generation,
                                             logger=None)
        results_dict = persistence.restore()

        if len(results_dict) == 0:
            # File not found
            continue

        for key in results_dict.keys():
            result = results_dict[key]
            try:
                # XXX Use FitnessObjectives prepared from config?
                alt_objective = result['metrics'][args.alt_objective]
                fitness = result['metrics']['fitness'] # XXX not kosher
            except Exception:
                try:
                    alt_objective = result['metrics'][args.alt_objective]
                    fitness = result['fitness'] # XXX not kosher
                except Exception as exception:
                    if args.alt_objective == "num_params":
                        fitness = result['fitness'] # XXX not kosher

                        # XXX What generates this params file?
                        cache_file = generation_filer.get_generation_file(
                                        "candidate_{0}.params".format(key))

                        if os.path.exists(cache_file):
                            with open(cache_file, 'rb') as my_file:
                                alt_objective = my_file.read()
                        else:
                            undefined = 0
                            k = undefined  # XXX
                            print("Extracting num params from network {}".format(k))
                            model = get_model(args.experiment_dir, key, generation)
                            alt_objective = str(model.count_params())
                            with open(cache_file, 'wb') as my_file:
                                my_file.write(alt_objective)
                    else:
                        raise exception

            if args.alt_objective == 'training_time':
                alt_objective = str(float(alt_objective) / 3600.0)
            with open(csv_file, 'ab') as my_file:
                line = '%s %s %s\n' % (generation, alt_objective, fitness)
                my_file.write(line)
    return csv_file
Пример #2
0
    def draw_best_candidate_results(self,
                                    best_candidate,
                                    generation=None,
                                    suffix=''):
        """
        :param best_candidate: A candidate object comprising the best of a
                        generation.
        :param generation: Default value is None
        :param suffix: Default value is an empty string
        """
        experiment_config = self.master_config.get('experiment_config')
        if not experiment_config.get('visualize'):
            return

        best_id = self.candidate_util.get_candidate_id(best_candidate)
        best_fitness = self.candidate_util.get_candidate_fitness(
            best_candidate)

        fitness = best_fitness if best_fitness is None else \
            round(best_fitness, 4)

        # Determine the output file name basis

        # XXX Use fitness for now.
        #     Later on can address multi-objective goals.
        metric_name = "fitness"
        if generation is not None:
            # Put the file in the gen_NN directory.
            # Call it best_candidate to match the best_candidate.json
            # that gets put there

            base_name = "best_{0}_candidate".format(metric_name)
            filer = GenerationFiler(self.experiment_dir, generation)
            base_path = filer.get_generation_file(base_name)
        else:
            # We do not have a generation that we know about so write out
            # the old-school file name.
            # XXX Not entirely sure when this path would be taken
            base_name = "F{0}_ID-{1}_{2}best_{3}".format(
                fitness, best_id, suffix, metric_name)
            filer = ExperimentFiler(self.experiment_dir)
            base_path = filer.experiment_file(base_name)

        # NetworkVisualizers use the build_training_model() which requires
        # a data_dict of file keys -> file paths to exist.  Domains that
        # wish to visualize their networks that use the data_dict will
        # need to deal with a None value for data dict in the visualization
        # case.
        data_dict = None

        visualizer = NetworkMultiVisualizer(self.master_config,
                                            data_dict,
                                            base_path,
                                            logger=self.logger)
        visualizer.visualize(best_candidate)