def processProjectionSet(Is, Ir): sigma = 0.9 alpha = 0 subImage = Is - Ir subImage = np.median(subImage, axis=0) dI = (subImage * (np.mean(Is) / np.mean(Ir))) dx, dy = derivativesByOpticalflow(np.mean(Ir, axis=0), dI, alpha=alpha, sig_scale=sigma) phi = fc.frankotchellappa(dx, dy, False) phi3 = kottler(dx, dy) phi2 = LarkinAnissonSheppard(dx, dy) mintoAdd = min(np.amin(dx), np.amin(dy)) dxPlus = dx + mintoAdd dyPlus = dy + mintoAdd gradientNorm = np.sqrt(dxPlus**2 + dyPlus**2) return { 'dx': dx, 'dy': dy, 'phi': phi, 'phi2': phi2, 'phi3': phi3, 'gradientNorm': gradientNorm }
def processOneProjection(Is, Ir): sigma = 0.9 alpha = 0 dI = (Is - Ir * (np.mean(gaussian_filter(Is, sigma=2.)) / np.mean(gaussian_filter(Ir, sigma=2.)))) alpha = np.finfo(np.float32).eps dx, dy = derivativesByOpticalflow(Is, dI, alpha=alpha, sig_scale=sigma) phi = fc.frankotchellappa(dx, dy, False) phi3 = kottler(dx, dy) phi2 = LarkinAnissonSheppard(dx, dy) mintoAdd = min(np.amin(dx), np.amin(dy)) dxPlus = dx + mintoAdd dyPlus = dy + mintoAdd gradientNorm = np.sqrt(dxPlus**2 + dyPlus**2) return { 'dx': dx, 'dy': dy, 'phi': phi, 'phi2': phi2, 'phi3': phi3, 'gradientNorm': gradientNorm }
def processOneProjection(Is, Ir): sigma = 0.9 alpha = 0 dI = (Is - Ir * (np.mean(Is) / np.mean(Ir))) dx, dy = derivativesByOpticalflow(Ir, dI, alpha=alpha, sig_scale=sigma) phi = fc.frankotchellappa(dx, dy, False) phi3 = kottler(dx, dy) phi2 = LarkinAnissonSheppard(dx, dy) return {'dx': dx, 'dy': dy, 'phi': phi, 'phi2': phi2, 'phi3': phi3}
def processProjectionSet(Is, Ir): sigma = 1 alpha = 0 subImage = Is - Ir subImage = np.mean(subImage, axis=0) dI = (subImage * (np.mean(Is) / np.mean(Ir))) dx, dy = derivativesByOpticalflow(np.mean(Is, axis=0), dI, alpha=alpha, sig_scale=sigma) phi = fc.frankotchellappa(dx, dy, False) phi3 = kottler(dx, dy) phi2 = LarkinAnissonSheppard(dx, dy) return {'dx': dx, 'dy': dy, 'phi': phi, 'phi2': phi2, 'phi3': phi3}
def processProjectionSetWithDarkFields(Is, Ir, dark): sigma = 1 alpha = 0 #Is=corrections.normalizationMultipleDarkField(Is,dark) #Ir=corrections.normalizationMultipleDarkField(Ir,dark) subImage = Is - Ir subImage = np.median(subImage, axis=0) dI = (subImage * (np.mean(Is) / np.mean(Ir))) dx, dy = derivativesByOpticalflow(np.mean(Ir, axis=0), dI, alpha=alpha, sig_scale=sigma) phi = fc.frankotchellappa(dx, dy, False) phi3 = kottler(dx, dy) phi2 = LarkinAnissonSheppard(dx, dy) return {'dx': dx, 'dy': dy, 'phi': phi, 'phi2': phi2, 'phi3': phi3}