def loop_surveys(self, cosmic_pop, z_max): for survey in self.surveys: surv_pop = SurveyPopulation(cosmic_pop, survey) surv_pop.z_max = z_max rate = surv_pop.source_rate.det n = surv_pop.n_sources() errs = [np.abs(e - n) for e in poisson_interval(n)] d = { 'survey': survey.name, 'pop': cosmic_pop.name, 'rate': rate, 'err_low': errs[0], 'err_high': errs[1], 'z_max': z_max } self.data.append(d)
ax.set_aspect('auto') # Get norm pop y = 0 ys = [] names = [] rates = [] norm_sim_rate = surv_pops[0].source_rate.det norm_real_rate = EXPECTED['parkes-htru'][0] / EXPECTED['parkes-htru'][1] norm_rate = norm_sim_rate / norm_real_rate for i, surv_pop in enumerate(surv_pops): name = surv_pop.name.split('_')[-1] pprint(name) if surv_pop.n_sources() == 0: print(surv_pop.source_rate) print(f'{name} | no FRBs in population') continue names.append(name) ys.append(y) # Dimensions measure plot ax = axes[0] ax.set_xlabel(r'DM ($\textrm{pc}\ \textrm{cm}^{-3}$)') ax.set_ylabel(r'\#') ax.set_yscale('log') bins, values = hist(surv_pop.frbs.dm, bin_type='lin',