def log_monsters_summary(): print "Space Monsters Placement Summary" for monster, counter in monsters_summary: if counter > 0: print "Placed space monster", monster, counter, "times" print inverse_monster_chance = fo.monster_frequency(fo.get_galaxy_setup_data().monsterFrequency) monster_chance = 1.0 / (1e-5 + inverse_monster_chance) # the following loop depends on name mapping done in monsters.py print "Tracked Monster and Nest Summary (base monster freq: %4.1f%%)" % (100 * monster_chance) print "%-18s | %8s | %8s | %8s | %12s | %s" %\ ("Monster", "chance", "# tried", "# placed", "# valid sys locs", "# valid nest planet locs") for monster in tracked_monsters_summary: print "%-18s | %5.2f | %4d | %4d | %4d | %4d" % (monster, tracked_monsters_chance[monster], tracked_monsters_tries[monster], tracked_monsters_summary[monster], tracked_monsters_location_summary[monster], tracked_nest_location_summary[monster])
def log_monsters_summary(): print "Space Monsters Placement Summary" for monster, counter in monsters_summary: if counter > 0: print "Placed space monster", monster, counter, "times" print inverse_monster_chance = fo.monster_frequency( fo.get_galaxy_setup_data().monsterFrequency) monster_chance = 1.0 / (1e-5 + inverse_monster_chance) # the following loop depends on name mapping done in monsters.py print "Tracked Monster and Nest Summary (base monster freq: %4.1f%%)" % ( 100 * monster_chance) print "%-18s | %8s | %8s | %8s | %12s | %s" %\ ("Monster", "chance", "# tried", "# placed", "# valid sys locs", "# valid nest planet locs") for monster in tracked_monsters_summary: print "%-18s | %5.2f | %4d | %4d | %4d | %4d" % ( monster, tracked_monsters_chance[monster], tracked_monsters_tries[monster], tracked_monsters_summary[monster], tracked_monsters_location_summary[monster], tracked_nest_location_summary[monster])
def generate_monsters(monster_freq, systems): """ Adds space monsters to systems. """ # first, calculate the basic chance for monster generation in a system # based on the monster frequency that has been passed # get the corresponding value for the specified monster frequency from the universe tables inverse_monster_chance = fo.monster_frequency(monster_freq) # as the value in the universe table is higher for a lower frequency, we have to invert it # exception: a value of 0 means no monsters, in this case return immediately if inverse_monster_chance <= 0: return basic_chance = 1.0 / float(inverse_monster_chance) print "Default monster spawn chance:", basic_chance expectation_tally = 0.0 actual_tally = 0 # get all monster fleets that have a spawn rate and limit both > 0 and at least one monster ship design in it # (a monster fleet with no monsters in it is pointless) and store them with a spawn counter in a dict # this counter will be set to the spawn limit initially and decreased every time the monster fleet is spawned fleet_plans = { fp: fp.spawn_limit() for fp in fo.load_monster_fleet_plan_list( "space_monster_spawn_fleets.txt") if fp.spawn_rate() > 0.0 and fp.spawn_limit() > 0 and fp.ship_designs() } # map nests to monsters for ease of reporting nest_name_map = dict( zip([ "KRAKEN_NEST_SPECIAL", "SNOWFLAKE_NEST_SPECIAL", "JUGGERNAUT_NEST_SPECIAL" ], ["SM_KRAKEN_1", "SM_SNOWFLAKE_1", "SM_JUGGERNAUT_1"])) tracked_plan_tries = {name: 0 for name in nest_name_map.values()} tracked_plan_counts = {name: 0 for name in nest_name_map.values()} tracked_plan_valid_locations = { fp: 0 for fp, limit in fleet_plans.iteritems() if fp.name() in tracked_plan_counts } tracked_nest_valid_locations = {nest: 0 for nest in nest_name_map} if not fleet_plans: return # dump a list of all monster fleets meeting these conditions and their properties to the log print "Monster fleets available for generation at game start:" for fleet_plan in fleet_plans: print "...", fleet_plan.name(), ": spawn rate", fleet_plan.spawn_rate( ), print "/ spawn limit", fleet_plan.spawn_limit(), print "/ effective chance", basic_chance * fleet_plan.spawn_rate(), if len(systems) < 1000: print "/ can be spawned at", len( [s for s in systems if fleet_plan.location(s)]), "systems" else: print # to terminate the print line if fleet_plan.name() in nest_name_map.values(): statistics.tracked_monsters_chance[ fleet_plan.name()] = basic_chance * fleet_plan.spawn_rate() # for each system in the list that has been passed to this function, find a monster fleet that can be spawned at # the system and which hasn't already been added too many times, then attempt to add that monster fleet by # testing the spawn rate chance for system in systems: # collect info for tracked monster nest valid locations for planet in fo.sys_get_planets(system): for nest in tracked_nest_valid_locations: #print "\t tracked monster check planet: %d size: %s for nest: %20s | result: %s" % (planet, fo.planet_get_size(planet), nest, fo.special_location(nest, planet)) if fo.special_location(nest, planet): tracked_nest_valid_locations[nest] += 1 # collect info for tracked monster valid locations for fp in tracked_plan_valid_locations: if fp.location(system): tracked_plan_valid_locations[fp] += 1 # filter out all monster fleets whose location condition allows this system and whose counter hasn't reached 0 suitable_fleet_plans = [ fp for fp, counter in fleet_plans.iteritems() if counter and fp.location(system) ] # if there are no suitable monster fleets for this system, continue with the next if not suitable_fleet_plans: continue # randomly select one monster fleet out of the suitable ones and then test if we want to add it to this system # by making a roll against the basic chance multiplied by the spawn rate of this monster fleet expectation_tally += basic_chance * sum( [fp.spawn_rate() for fp in suitable_fleet_plans]) / len(suitable_fleet_plans) fleet_plan = random.choice(suitable_fleet_plans) if fleet_plan.name() in tracked_plan_tries: tracked_plan_tries[fleet_plan.name()] += 1 if random.random() > basic_chance * fleet_plan.spawn_rate(): print "\t\t At system %4d rejected monster fleet %s from %d suitable fleets" % ( system, fleet_plan.name(), len(suitable_fleet_plans)) # no, test failed, continue with the next system continue actual_tally += 1 if fleet_plan.name() in tracked_plan_counts: tracked_plan_counts[fleet_plan.name()] += 1 # all prerequisites and the test have been met, now spawn this monster fleet in this system print "Spawn", fleet_plan.name(), "at", fo.get_name(system) # decrement counter for this monster fleet fleet_plans[fleet_plan] -= 1 # create monster fleet monster_fleet = fo.create_monster_fleet(system) # if fleet creation fails, report an error and try to continue with next system if monster_fleet == fo.invalid_object(): util.report_error( "Python generate_monsters: unable to create new monster fleet %s" % fleet_plan.name()) continue # add monsters to fleet for design in fleet_plan.ship_designs(): # create monster, if creation fails, report an error and try to continue with the next design if fo.create_monster(design, monster_fleet) == fo.invalid_object(): util.report_error( "Python generate_monsters: unable to create monster %s" % design) print "Actual # monster fleets placed: %d; Total Placement Expectation: %.1f" % ( actual_tally, expectation_tally) # finally, compile some statistics to be dumped to the log later statistics.monsters_summary = [(fp.name(), fp.spawn_limit() - counter) for fp, counter in fleet_plans.iteritems()] statistics.tracked_monsters_tries.update(tracked_plan_tries) statistics.tracked_monsters_summary.update(tracked_plan_counts) statistics.tracked_monsters_location_summary.update([ (fp.name(), count) for fp, count in tracked_plan_valid_locations.iteritems() ]) statistics.tracked_nest_location_summary.update([ (nest_name_map[nest], count) for nest, count in tracked_nest_valid_locations.items() ])
def generate_monsters(monster_freq, systems): """ Adds space monsters to systems. """ # first, calculate the basic chance for monster generation in a system # based on the monster frequency that has been passed # get the corresponding value for the specified monster frequency from the universe tables inverse_monster_chance = fo.monster_frequency(monster_freq) # as the value in the universe table is higher for a lower frequency, we have to invert it # exception: a value of 0 means no monsters, in this case return immediately if inverse_monster_chance <= 0: return basic_chance = 1.0 / float(inverse_monster_chance) print "Default monster spawn chance:", basic_chance expectation_tally = 0.0 actual_tally = 0 # get all monster fleets that have a spawn rate and limit both > 0 and at least one monster ship design in it # (a monster fleet with no monsters in it is pointless) and store them with a spawn counter in a dict # this counter will be set to the spawn limit initially and decreased every time the monster fleet is spawned fleet_plans = {fp: fp.spawn_limit() for fp in fo.load_monster_fleet_plan_list("space_monster_spawn_fleets.txt") if fp.spawn_rate() > 0.0 and fp.spawn_limit() > 0 and fp.ship_designs()} # map nests to monsters for ease of reporting nest_name_map = dict(zip(["KRAKEN_NEST_SPECIAL", "SNOWFLAKE_NEST_SPECIAL", "JUGGERNAUT_NEST_SPECIAL"], ["SM_KRAKEN_1", "SM_SNOWFLAKE_1", "SM_JUGGERNAUT_1"])) tracked_plan_tries = {name: 0 for name in nest_name_map.values()} tracked_plan_counts = {name: 0 for name in nest_name_map.values()} tracked_plan_valid_locations = {fp: 0 for fp, limit in fleet_plans.iteritems() if fp.name() in tracked_plan_counts} tracked_nest_valid_locations = {nest: 0 for nest in nest_name_map} if not fleet_plans: return # dump a list of all monster fleets meeting these conditions and their properties to the log print "Monster fleets available for generation at game start:" for fleet_plan in fleet_plans: print "...", fleet_plan.name(), ": spawn rate", fleet_plan.spawn_rate(), print "/ spawn limit", fleet_plan.spawn_limit(), print "/ effective chance", basic_chance * fleet_plan.spawn_rate(), if len(systems) < 1000: print "/ can be spawned at", len([s for s in systems if fleet_plan.location(s)]), "systems" else: print # to terminate the print line if fleet_plan.name() in nest_name_map.values(): statistics.tracked_monsters_chance[fleet_plan.name()] = basic_chance * fleet_plan.spawn_rate() # for each system in the list that has been passed to this function, find a monster fleet that can be spawned at # the system and which hasn't already been added too many times, then attempt to add that monster fleet by # testing the spawn rate chance for system in systems: # collect info for tracked monster nest valid locations for planet in fo.sys_get_planets(system): for nest in tracked_nest_valid_locations: #print "\t tracked monster check planet: %d size: %s for nest: %20s | result: %s" % (planet, fo.planet_get_size(planet), nest, fo.special_location(nest, planet)) if fo.special_location(nest, planet): tracked_nest_valid_locations[nest] += 1 # collect info for tracked monster valid locations for fp in tracked_plan_valid_locations: if fp.location(system): tracked_plan_valid_locations[fp] += 1 # filter out all monster fleets whose location condition allows this system and whose counter hasn't reached 0 suitable_fleet_plans = [fp for fp, counter in fleet_plans.iteritems() if counter and fp.location(system)] # if there are no suitable monster fleets for this system, continue with the next if not suitable_fleet_plans: continue # randomly select one monster fleet out of the suitable ones and then test if we want to add it to this system # by making a roll against the basic chance multiplied by the spawn rate of this monster fleet expectation_tally += basic_chance * sum([fp.spawn_rate() for fp in suitable_fleet_plans]) / len(suitable_fleet_plans) fleet_plan = random.choice(suitable_fleet_plans) if fleet_plan.name() in tracked_plan_tries: tracked_plan_tries[fleet_plan.name()] += 1 if random.random() > basic_chance * fleet_plan.spawn_rate(): print "\t\t At system %4d rejected monster fleet %s from %d suitable fleets" % (system, fleet_plan.name(), len(suitable_fleet_plans)) # no, test failed, continue with the next system continue actual_tally += 1 if fleet_plan.name() in tracked_plan_counts: tracked_plan_counts[fleet_plan.name()] += 1 # all prerequisites and the test have been met, now spawn this monster fleet in this system print "Spawn", fleet_plan.name(), "at", fo.get_name(system) # decrement counter for this monster fleet fleet_plans[fleet_plan] -= 1 # create monster fleet monster_fleet = fo.create_monster_fleet(system) # if fleet creation fails, report an error and try to continue with next system if monster_fleet == fo.invalid_object(): util.report_error("Python generate_monsters: unable to create new monster fleet %s" % fleet_plan.name()) continue # add monsters to fleet for design in fleet_plan.ship_designs(): # create monster, if creation fails, report an error and try to continue with the next design if fo.create_monster(design, monster_fleet) == fo.invalid_object(): util.report_error("Python generate_monsters: unable to create monster %s" % design) print "Actual # monster fleets placed: %d; Total Placement Expectation: %.1f" % (actual_tally, expectation_tally) # finally, compile some statistics to be dumped to the log later statistics.monsters_summary = [(fp.name(), fp.spawn_limit() - counter) for fp, counter in fleet_plans.iteritems()] statistics.tracked_monsters_tries.update(tracked_plan_tries) statistics.tracked_monsters_summary.update(tracked_plan_counts) statistics.tracked_monsters_location_summary.update([(fp.name(), count) for fp, count in tracked_plan_valid_locations.iteritems()]) statistics.tracked_nest_location_summary.update([(nest_name_map[nest], count) for nest, count in tracked_nest_valid_locations.items()])