def __init__(self, config: Dict[str, Any]) -> None: self.config = config self.backtesting = Backtesting(self.config) if not self.config.get('hyperopt'): self.custom_hyperopt = HyperOptAuto(self.config) else: self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config) self.custom_hyperopt.strategy = self.backtesting.strategy self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config) self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") strategy = str(self.config['strategy']) self.results_file = (self.config['user_data_dir'] / 'hyperopt_results' / f'strategy_{strategy}_hyperopt_results_{time_now}.pickle') self.data_pickle_file = (self.config['user_data_dir'] / 'hyperopt_results' / 'hyperopt_tickerdata.pkl') self.total_epochs = config.get('epochs', 0) self.current_best_loss = 100 self.clean_hyperopt() self.num_epochs_saved = 0 # Previous evaluations self.epochs: List = [] # Populate functions here (hasattr is slow so should not be run during "regular" operations) if hasattr(self.custom_hyperopt, 'populate_indicators'): self.backtesting.strategy.advise_indicators = ( # type: ignore self.custom_hyperopt.populate_indicators) # type: ignore if hasattr(self.custom_hyperopt, 'populate_buy_trend'): self.backtesting.strategy.advise_buy = ( # type: ignore self.custom_hyperopt.populate_buy_trend) # type: ignore if hasattr(self.custom_hyperopt, 'populate_sell_trend'): self.backtesting.strategy.advise_sell = ( # type: ignore self.custom_hyperopt.populate_sell_trend) # type: ignore # Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set if self.config.get('use_max_market_positions', True): self.max_open_trades = self.config['max_open_trades'] else: logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...') self.max_open_trades = 0 self.position_stacking = self.config.get('position_stacking', False) if self.has_space('sell'): # Make sure use_sell_signal is enabled if 'ask_strategy' not in self.config: self.config['ask_strategy'] = {} self.config['ask_strategy']['use_sell_signal'] = True self.print_all = self.config.get('print_all', False) self.hyperopt_table_header = 0 self.print_colorized = self.config.get('print_colorized', False) self.print_json = self.config.get('print_json', False)
def __init__(self, config: Dict[str, Any]) -> None: self.buy_space: List[Dimension] = [] self.sell_space: List[Dimension] = [] self.protection_space: List[Dimension] = [] self.roi_space: List[Dimension] = [] self.stoploss_space: List[Dimension] = [] self.trailing_space: List[Dimension] = [] self.dimensions: List[Dimension] = [] self.config = config self.backtesting = Backtesting(self.config) self.pairlist = self.backtesting.pairlists.whitelist if not self.config.get('hyperopt'): self.custom_hyperopt = HyperOptAuto(self.config) else: raise OperationalException( "Using separate Hyperopt files has been removed in 2021.9. Please convert " "your existing Hyperopt file to the new Hyperoptable strategy interface") self.backtesting._set_strategy(self.backtesting.strategylist[0]) self.custom_hyperopt.strategy = self.backtesting.strategy self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config) self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") strategy = str(self.config['strategy']) self.results_file: Path = (self.config['user_data_dir'] / 'hyperopt_results' / f'strategy_{strategy}_{time_now}.fthypt') self.data_pickle_file = (self.config['user_data_dir'] / 'hyperopt_results' / 'hyperopt_tickerdata.pkl') self.total_epochs = config.get('epochs', 0) self.current_best_loss = 100 self.clean_hyperopt() self.num_epochs_saved = 0 self.current_best_epoch: Optional[Dict[str, Any]] = None # Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set if self.config.get('use_max_market_positions', True): self.max_open_trades = self.config['max_open_trades'] else: logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...') self.max_open_trades = 0 self.position_stacking = self.config.get('position_stacking', False) if HyperoptTools.has_space(self.config, 'sell'): # Make sure use_sell_signal is enabled if 'ask_strategy' not in self.config: self.config['ask_strategy'] = {} self.config['ask_strategy']['use_sell_signal'] = True self.print_all = self.config.get('print_all', False) self.hyperopt_table_header = 0 self.print_colorized = self.config.get('print_colorized', False) self.print_json = self.config.get('print_json', False)
class Hyperopt: """ Hyperopt class, this class contains all the logic to run a hyperopt simulation To run a backtest: hyperopt = Hyperopt(config) hyperopt.start() """ custom_hyperopt: IHyperOpt def __init__(self, config: Dict[str, Any]) -> None: self.buy_space: List[Dimension] = [] self.sell_space: List[Dimension] = [] self.protection_space: List[Dimension] = [] self.roi_space: List[Dimension] = [] self.stoploss_space: List[Dimension] = [] self.trailing_space: List[Dimension] = [] self.dimensions: List[Dimension] = [] self.config = config self.backtesting = Backtesting(self.config) if not self.config.get('hyperopt'): self.custom_hyperopt = HyperOptAuto(self.config) else: raise OperationalException( "Using separate Hyperopt files has been removed in 2021.9. Please convert " "your existing Hyperopt file to the new Hyperoptable strategy interface" ) self.backtesting._set_strategy(self.backtesting.strategylist[0]) self.custom_hyperopt.strategy = self.backtesting.strategy self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss( self.config) self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") strategy = str(self.config['strategy']) self.results_file: Path = (self.config['user_data_dir'] / 'hyperopt_results' / f'strategy_{strategy}_{time_now}.fthypt') self.data_pickle_file = (self.config['user_data_dir'] / 'hyperopt_results' / 'hyperopt_tickerdata.pkl') self.total_epochs = config.get('epochs', 0) self.current_best_loss = 100 self.clean_hyperopt() self.num_epochs_saved = 0 self.current_best_epoch: Optional[Dict[str, Any]] = None # Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set if self.config.get('use_max_market_positions', True): self.max_open_trades = self.config['max_open_trades'] else: logger.debug( 'Ignoring max_open_trades (--disable-max-market-positions was used) ...' ) self.max_open_trades = 0 self.position_stacking = self.config.get('position_stacking', False) if HyperoptTools.has_space(self.config, 'sell'): # Make sure use_sell_signal is enabled if 'ask_strategy' not in self.config: self.config['ask_strategy'] = {} self.config['ask_strategy']['use_sell_signal'] = True self.print_all = self.config.get('print_all', False) self.hyperopt_table_header = 0 self.print_colorized = self.config.get('print_colorized', False) self.print_json = self.config.get('print_json', False) @staticmethod def get_lock_filename(config: Dict[str, Any]) -> str: return str(config['user_data_dir'] / 'hyperopt.lock') def clean_hyperopt(self) -> None: """ Remove hyperopt pickle files to restart hyperopt. """ for f in [self.data_pickle_file, self.results_file]: p = Path(f) if p.is_file(): logger.info(f"Removing `{p}`.") p.unlink() def _get_params_dict(self, dimensions: List[Dimension], raw_params: List[Any]) -> Dict: # Ensure the number of dimensions match # the number of parameters in the list. if len(raw_params) != len(dimensions): raise ValueError('Mismatch in number of search-space dimensions.') # Return a dict where the keys are the names of the dimensions # and the values are taken from the list of parameters. return {d.name: v for d, v in zip(dimensions, raw_params)} def _save_result(self, epoch: Dict) -> None: """ Save hyperopt results to file Store one line per epoch. While not a valid json object - this allows appending easily. :param epoch: result dictionary for this epoch. """ epoch[FTHYPT_FILEVERSION] = 2 with self.results_file.open('a') as f: rapidjson.dump(epoch, f, default=hyperopt_serializer, number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN) f.write("\n") self.num_epochs_saved += 1 logger.debug( f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} " f"saved to '{self.results_file}'.") # Store hyperopt filename latest_filename = Path.joinpath(self.results_file.parent, LAST_BT_RESULT_FN) file_dump_json(latest_filename, {'latest_hyperopt': str(self.results_file.name)}, log=False) def _get_params_details(self, params: Dict) -> Dict: """ Return the params for each space """ result: Dict = {} if HyperoptTools.has_space(self.config, 'buy'): result['buy'] = { p.name: params.get(p.name) for p in self.buy_space } if HyperoptTools.has_space(self.config, 'sell'): result['sell'] = { p.name: params.get(p.name) for p in self.sell_space } if HyperoptTools.has_space(self.config, 'protection'): result['protection'] = { p.name: params.get(p.name) for p in self.protection_space } if HyperoptTools.has_space(self.config, 'roi'): result['roi'] = { str(k): v for k, v in self.custom_hyperopt.generate_roi_table( params).items() } if HyperoptTools.has_space(self.config, 'stoploss'): result['stoploss'] = { p.name: params.get(p.name) for p in self.stoploss_space } if HyperoptTools.has_space(self.config, 'trailing'): result['trailing'] = self.custom_hyperopt.generate_trailing_params( params) return result def _get_no_optimize_details(self) -> Dict[str, Any]: """ Get non-optimized parameters """ result: Dict[str, Any] = {} strategy = self.backtesting.strategy if not HyperoptTools.has_space(self.config, 'roi'): result['roi'] = { str(k): v for k, v in strategy.minimal_roi.items() } if not HyperoptTools.has_space(self.config, 'stoploss'): result['stoploss'] = {'stoploss': strategy.stoploss} if not HyperoptTools.has_space(self.config, 'trailing'): result['trailing'] = { 'trailing_stop': strategy.trailing_stop, 'trailing_stop_positive': strategy.trailing_stop_positive, 'trailing_stop_positive_offset': strategy.trailing_stop_positive_offset, 'trailing_only_offset_is_reached': strategy.trailing_only_offset_is_reached, } return result def print_results(self, results) -> None: """ Log results if it is better than any previous evaluation TODO: this should be moved to HyperoptTools too """ is_best = results['is_best'] if self.print_all or is_best: print( HyperoptTools.get_result_table(self.config, results, self.total_epochs, self.print_all, self.print_colorized, self.hyperopt_table_header)) self.hyperopt_table_header = 2 def init_spaces(self): """ Assign the dimensions in the hyperoptimization space. """ if HyperoptTools.has_space(self.config, 'protection'): # Protections can only be optimized when using the Parameter interface logger.debug("Hyperopt has 'protection' space") # Enable Protections if protection space is selected. self.config['enable_protections'] = True self.protection_space = self.custom_hyperopt.protection_space() if HyperoptTools.has_space(self.config, 'buy'): logger.debug("Hyperopt has 'buy' space") self.buy_space = self.custom_hyperopt.buy_indicator_space() if HyperoptTools.has_space(self.config, 'sell'): logger.debug("Hyperopt has 'sell' space") self.sell_space = self.custom_hyperopt.sell_indicator_space() if HyperoptTools.has_space(self.config, 'roi'): logger.debug("Hyperopt has 'roi' space") self.roi_space = self.custom_hyperopt.roi_space() if HyperoptTools.has_space(self.config, 'stoploss'): logger.debug("Hyperopt has 'stoploss' space") self.stoploss_space = self.custom_hyperopt.stoploss_space() if HyperoptTools.has_space(self.config, 'trailing'): logger.debug("Hyperopt has 'trailing' space") self.trailing_space = self.custom_hyperopt.trailing_space() self.dimensions = (self.buy_space + self.sell_space + self.protection_space + self.roi_space + self.stoploss_space + self.trailing_space) def assign_params(self, params_dict: Dict, category: str) -> None: """ Assign hyperoptable parameters """ for attr_name, attr in self.backtesting.strategy.enumerate_parameters( category): if attr.optimize: # noinspection PyProtectedMember attr.value = params_dict[attr_name] def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict: """ Used Optimize function. Called once per epoch to optimize whatever is configured. Keep this function as optimized as possible! """ backtest_start_time = datetime.now(timezone.utc) params_dict = self._get_params_dict(self.dimensions, raw_params) # Apply parameters if HyperoptTools.has_space(self.config, 'buy'): self.assign_params(params_dict, 'buy') if HyperoptTools.has_space(self.config, 'sell'): self.assign_params(params_dict, 'sell') if HyperoptTools.has_space(self.config, 'protection'): self.assign_params(params_dict, 'protection') if HyperoptTools.has_space(self.config, 'roi'): self.backtesting.strategy.minimal_roi = ( # type: ignore self.custom_hyperopt.generate_roi_table(params_dict)) if HyperoptTools.has_space(self.config, 'stoploss'): self.backtesting.strategy.stoploss = params_dict['stoploss'] if HyperoptTools.has_space(self.config, 'trailing'): d = self.custom_hyperopt.generate_trailing_params(params_dict) self.backtesting.strategy.trailing_stop = d['trailing_stop'] self.backtesting.strategy.trailing_stop_positive = d[ 'trailing_stop_positive'] self.backtesting.strategy.trailing_stop_positive_offset = \ d['trailing_stop_positive_offset'] self.backtesting.strategy.trailing_only_offset_is_reached = \ d['trailing_only_offset_is_reached'] with self.data_pickle_file.open('rb') as f: processed = load(f, mmap_mode='r') bt_results = self.backtesting.backtest( processed=processed, start_date=self.min_date, end_date=self.max_date, max_open_trades=self.max_open_trades, position_stacking=self.position_stacking, enable_protections=self.config.get('enable_protections', False), ) backtest_end_time = datetime.now(timezone.utc) bt_results.update({ 'backtest_start_time': int(backtest_start_time.timestamp()), 'backtest_end_time': int(backtest_end_time.timestamp()), }) return self._get_results_dict(bt_results, self.min_date, self.max_date, params_dict, processed=processed) def _get_results_dict(self, backtesting_results, min_date, max_date, params_dict, processed: Dict[str, DataFrame]) -> Dict[str, Any]: params_details = self._get_params_details(params_dict) strat_stats = generate_strategy_stats( processed, self.backtesting.strategy.get_strategy_name(), backtesting_results, min_date, max_date, market_change=0) results_explanation = HyperoptTools.format_results_explanation_string( strat_stats, self.config['stake_currency']) not_optimized = self.backtesting.strategy.get_no_optimize_params() not_optimized = deep_merge_dicts(not_optimized, self._get_no_optimize_details()) trade_count = strat_stats['total_trades'] total_profit = strat_stats['profit_total'] # If this evaluation contains too short amount of trades to be # interesting -- consider it as 'bad' (assigned max. loss value) # in order to cast this hyperspace point away from optimization # path. We do not want to optimize 'hodl' strategies. loss: float = MAX_LOSS if trade_count >= self.config['hyperopt_min_trades']: loss = self.calculate_loss(results=backtesting_results['results'], trade_count=trade_count, min_date=min_date, max_date=max_date, config=self.config, processed=processed, backtest_stats=strat_stats) return { 'loss': loss, 'params_dict': params_dict, 'params_details': params_details, 'params_not_optimized': not_optimized, 'results_metrics': strat_stats, 'results_explanation': results_explanation, 'total_profit': total_profit, } def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer: estimator = self.custom_hyperopt.generate_estimator() acq_optimizer = "sampling" if isinstance(estimator, str): if estimator not in ("GP", "RF", "ET", "GBRT"): raise OperationalException( f"Estimator {estimator} not supported.") else: acq_optimizer = "auto" logger.info(f"Using estimator {estimator}.") return Optimizer( dimensions, base_estimator=estimator, acq_optimizer=acq_optimizer, n_initial_points=INITIAL_POINTS, acq_optimizer_kwargs={'n_jobs': cpu_count}, random_state=self.random_state, model_queue_size=SKOPT_MODEL_QUEUE_SIZE, ) def run_optimizer_parallel(self, parallel, asked, i) -> List: return parallel( delayed(wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked) def _set_random_state(self, random_state: Optional[int]) -> int: return random_state or random.randint(1, 2**16 - 1) def prepare_hyperopt_data(self) -> None: data, timerange = self.backtesting.load_bt_data() logger.info("Dataload complete. Calculating indicators") preprocessed = self.backtesting.strategy.advise_all_indicators(data) # Trim startup period from analyzed dataframe to get correct dates for output. processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup) self.min_date, self.max_date = get_timerange(processed) logger.info( f'Hyperopting with data from {self.min_date.strftime(DATETIME_PRINT_FORMAT)} ' f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} ' f'({(self.max_date - self.min_date).days} days)..') # Store non-trimmed data - will be trimmed after signal generation. dump(preprocessed, self.data_pickle_file) def start(self) -> None: self.random_state = self._set_random_state( self.config.get('hyperopt_random_state', None)) logger.info(f"Using optimizer random state: {self.random_state}") self.hyperopt_table_header = -1 # Initialize spaces ... self.init_spaces() self.prepare_hyperopt_data() # We don't need exchange instance anymore while running hyperopt self.backtesting.exchange.close() self.backtesting.exchange._api = None # type: ignore self.backtesting.exchange._api_async = None # type: ignore # self.backtesting.exchange = None # type: ignore self.backtesting.pairlists = None # type: ignore cpus = cpu_count() logger.info(f"Found {cpus} CPU cores. Let's make them scream!") config_jobs = self.config.get('hyperopt_jobs', -1) logger.info(f'Number of parallel jobs set as: {config_jobs}') self.opt = self.get_optimizer(self.dimensions, config_jobs) if self.print_colorized: colorama_init(autoreset=True) try: with Parallel(n_jobs=config_jobs) as parallel: jobs = parallel._effective_n_jobs() logger.info( f'Effective number of parallel workers used: {jobs}') # Define progressbar if self.print_colorized: widgets = [ ' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs), ' (', progressbar.Percentage(), ')] ', progressbar.Bar(marker=progressbar.AnimatedMarker( fill='\N{FULL BLOCK}', fill_wrap=Fore.GREEN + '{}' + Fore.RESET, marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL, )), ' [', progressbar.ETA(), ', ', progressbar.Timer(), ']', ] else: widgets = [ ' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs), ' (', progressbar.Percentage(), ')] ', progressbar.Bar(marker=progressbar.AnimatedMarker( fill='\N{FULL BLOCK}', )), ' [', progressbar.ETA(), ', ', progressbar.Timer(), ']', ] with progressbar.ProgressBar(max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False, widgets=widgets) as pbar: EVALS = ceil(self.total_epochs / jobs) for i in range(EVALS): # Correct the number of epochs to be processed for the last # iteration (should not exceed self.total_epochs in total) n_rest = (i + 1) * jobs - self.total_epochs current_jobs = jobs - n_rest if n_rest > 0 else jobs asked = self.opt.ask(n_points=current_jobs) f_val = self.run_optimizer_parallel(parallel, asked, i) self.opt.tell(asked, [v['loss'] for v in f_val]) # Calculate progressbar outputs for j, val in enumerate(f_val): # Use human-friendly indexes here (starting from 1) current = i * jobs + j + 1 val['current_epoch'] = current val['is_initial_point'] = current <= INITIAL_POINTS logger.debug(f"Optimizer epoch evaluated: {val}") is_best = HyperoptTools.is_best_loss( val, self.current_best_loss) # This value is assigned here and not in the optimization method # to keep proper order in the list of results. That's because # evaluations can take different time. Here they are aligned in the # order they will be shown to the user. val['is_best'] = is_best self.print_results(val) if is_best: self.current_best_loss = val['loss'] self.current_best_epoch = val self._save_result(val) pbar.update(current) except KeyboardInterrupt: print('User interrupted..') logger.info( f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} " f"saved to '{self.results_file}'.") if self.current_best_epoch: HyperoptTools.try_export_params( self.config, self.backtesting.strategy.get_strategy_name(), self.current_best_epoch) HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs, self.print_json) else: # This is printed when Ctrl+C is pressed quickly, before first epochs have # a chance to be evaluated. print("No epochs evaluated yet, no best result.")
class Hyperopt: """ Hyperopt class, this class contains all the logic to run a hyperopt simulation To run a backtest: hyperopt = Hyperopt(config) hyperopt.start() """ custom_hyperopt: IHyperOpt def __init__(self, config: Dict[str, Any]) -> None: self.config = config self.backtesting = Backtesting(self.config) if not self.config.get('hyperopt'): self.custom_hyperopt = HyperOptAuto(self.config) else: self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config) self.custom_hyperopt.strategy = self.backtesting.strategy self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss( self.config) self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") strategy = str(self.config['strategy']) self.results_file = ( self.config['user_data_dir'] / 'hyperopt_results' / f'strategy_{strategy}_hyperopt_results_{time_now}.pickle') self.data_pickle_file = (self.config['user_data_dir'] / 'hyperopt_results' / 'hyperopt_tickerdata.pkl') self.total_epochs = config.get('epochs', 0) self.current_best_loss = 100 self.clean_hyperopt() self.num_epochs_saved = 0 # Previous evaluations self.epochs: List = [] # Populate functions here (hasattr is slow so should not be run during "regular" operations) if hasattr(self.custom_hyperopt, 'populate_indicators'): self.backtesting.strategy.advise_indicators = ( # type: ignore self.custom_hyperopt.populate_indicators) # type: ignore if hasattr(self.custom_hyperopt, 'populate_buy_trend'): self.backtesting.strategy.advise_buy = ( # type: ignore self.custom_hyperopt.populate_buy_trend) # type: ignore if hasattr(self.custom_hyperopt, 'populate_sell_trend'): self.backtesting.strategy.advise_sell = ( # type: ignore self.custom_hyperopt.populate_sell_trend) # type: ignore # Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set if self.config.get('use_max_market_positions', True): self.max_open_trades = self.config['max_open_trades'] else: logger.debug( 'Ignoring max_open_trades (--disable-max-market-positions was used) ...' ) self.max_open_trades = 0 self.position_stacking = self.config.get('position_stacking', False) if self.has_space('sell'): # Make sure use_sell_signal is enabled if 'ask_strategy' not in self.config: self.config['ask_strategy'] = {} self.config['ask_strategy']['use_sell_signal'] = True self.print_all = self.config.get('print_all', False) self.hyperopt_table_header = 0 self.print_colorized = self.config.get('print_colorized', False) self.print_json = self.config.get('print_json', False) @staticmethod def get_lock_filename(config: Dict[str, Any]) -> str: return str(config['user_data_dir'] / 'hyperopt.lock') def clean_hyperopt(self) -> None: """ Remove hyperopt pickle files to restart hyperopt. """ for f in [self.data_pickle_file, self.results_file]: p = Path(f) if p.is_file(): logger.info(f"Removing `{p}`.") p.unlink() def _get_params_dict(self, raw_params: List[Any]) -> Dict: dimensions: List[Dimension] = self.dimensions # Ensure the number of dimensions match # the number of parameters in the list. if len(raw_params) != len(dimensions): raise ValueError('Mismatch in number of search-space dimensions.') # Return a dict where the keys are the names of the dimensions # and the values are taken from the list of parameters. return {d.name: v for d, v in zip(dimensions, raw_params)} def _save_results(self) -> None: """ Save hyperopt results to file """ num_epochs = len(self.epochs) if num_epochs > self.num_epochs_saved: logger.debug(f"Saving {num_epochs} {plural(num_epochs, 'epoch')}.") dump(self.epochs, self.results_file) self.num_epochs_saved = num_epochs logger.debug( f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} " f"saved to '{self.results_file}'.") # Store hyperopt filename latest_filename = Path.joinpath(self.results_file.parent, LAST_BT_RESULT_FN) file_dump_json(latest_filename, {'latest_hyperopt': str(self.results_file.name)}, log=False) def _get_params_details(self, params: Dict) -> Dict: """ Return the params for each space """ result: Dict = {} if self.has_space('buy'): result['buy'] = { p.name: params.get(p.name) for p in self.hyperopt_space('buy') } if self.has_space('sell'): result['sell'] = { p.name: params.get(p.name) for p in self.hyperopt_space('sell') } if self.has_space('roi'): result['roi'] = self.custom_hyperopt.generate_roi_table(params) if self.has_space('stoploss'): result['stoploss'] = { p.name: params.get(p.name) for p in self.hyperopt_space('stoploss') } if self.has_space('trailing'): result['trailing'] = self.custom_hyperopt.generate_trailing_params( params) return result def print_results(self, results) -> None: """ Log results if it is better than any previous evaluation TODO: this should be moved to HyperoptTools too """ is_best = results['is_best'] if self.print_all or is_best: print( HyperoptTools.get_result_table(self.config, results, self.total_epochs, self.print_all, self.print_colorized, self.hyperopt_table_header)) self.hyperopt_table_header = 2 def has_space(self, space: str) -> bool: """ Tell if the space value is contained in the configuration """ # The 'trailing' space is not included in the 'default' set of spaces if space == 'trailing': return any(s in self.config['spaces'] for s in [space, 'all']) else: return any(s in self.config['spaces'] for s in [space, 'all', 'default']) def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]: """ Return the dimensions in the hyperoptimization space. :param space: Defines hyperspace to return dimensions for. If None, then the self.has_space() will be used to return dimensions for all hyperspaces used. """ spaces: List[Dimension] = [] if space == 'buy' or (space is None and self.has_space('buy')): logger.debug("Hyperopt has 'buy' space") spaces += self.custom_hyperopt.indicator_space() if space == 'sell' or (space is None and self.has_space('sell')): logger.debug("Hyperopt has 'sell' space") spaces += self.custom_hyperopt.sell_indicator_space() if space == 'roi' or (space is None and self.has_space('roi')): logger.debug("Hyperopt has 'roi' space") spaces += self.custom_hyperopt.roi_space() if space == 'stoploss' or (space is None and self.has_space('stoploss')): logger.debug("Hyperopt has 'stoploss' space") spaces += self.custom_hyperopt.stoploss_space() if space == 'trailing' or (space is None and self.has_space('trailing')): logger.debug("Hyperopt has 'trailing' space") spaces += self.custom_hyperopt.trailing_space() return spaces def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict: """ Used Optimize function. Called once per epoch to optimize whatever is configured. Keep this function as optimized as possible! """ params_dict = self._get_params_dict(raw_params) params_details = self._get_params_details(params_dict) if self.has_space('roi'): self.backtesting.strategy.minimal_roi = ( # type: ignore self.custom_hyperopt.generate_roi_table(params_dict)) if self.has_space('buy'): self.backtesting.strategy.advise_buy = ( # type: ignore self.custom_hyperopt.buy_strategy_generator(params_dict)) if self.has_space('sell'): self.backtesting.strategy.advise_sell = ( # type: ignore self.custom_hyperopt.sell_strategy_generator(params_dict)) if self.has_space('stoploss'): self.backtesting.strategy.stoploss = params_dict['stoploss'] if self.has_space('trailing'): d = self.custom_hyperopt.generate_trailing_params(params_dict) self.backtesting.strategy.trailing_stop = d['trailing_stop'] self.backtesting.strategy.trailing_stop_positive = d[ 'trailing_stop_positive'] self.backtesting.strategy.trailing_stop_positive_offset = \ d['trailing_stop_positive_offset'] self.backtesting.strategy.trailing_only_offset_is_reached = \ d['trailing_only_offset_is_reached'] processed = load(self.data_pickle_file) min_date, max_date = get_timerange(processed) backtesting_results = self.backtesting.backtest( processed=processed, start_date=min_date.datetime, end_date=max_date.datetime, max_open_trades=self.max_open_trades, position_stacking=self.position_stacking, enable_protections=self.config.get('enable_protections', False), ) return self._get_results_dict(backtesting_results, min_date, max_date, params_dict, params_details, processed=processed) def _get_results_dict(self, backtesting_results, min_date, max_date, params_dict, params_details, processed: Dict[str, DataFrame]): results_metrics = self._calculate_results_metrics(backtesting_results) results_explanation = self._format_results_explanation_string( results_metrics) trade_count = results_metrics['trade_count'] total_profit = results_metrics['total_profit'] # If this evaluation contains too short amount of trades to be # interesting -- consider it as 'bad' (assigned max. loss value) # in order to cast this hyperspace point away from optimization # path. We do not want to optimize 'hodl' strategies. loss: float = MAX_LOSS if trade_count >= self.config['hyperopt_min_trades']: loss = self.calculate_loss(results=backtesting_results, trade_count=trade_count, min_date=min_date.datetime, max_date=max_date.datetime, config=self.config, processed=processed) return { 'loss': loss, 'params_dict': params_dict, 'params_details': params_details, 'results_metrics': results_metrics, 'results_explanation': results_explanation, 'total_profit': total_profit, } def _calculate_results_metrics(self, backtesting_results: DataFrame) -> Dict: wins = len( backtesting_results[backtesting_results['profit_ratio'] > 0]) draws = len( backtesting_results[backtesting_results['profit_ratio'] == 0]) losses = len( backtesting_results[backtesting_results['profit_ratio'] < 0]) return { 'trade_count': len(backtesting_results.index), 'wins': wins, 'draws': draws, 'losses': losses, 'winsdrawslosses': f"{wins:>4} {draws:>4} {losses:>4}", 'avg_profit': backtesting_results['profit_ratio'].mean() * 100.0, 'median_profit': backtesting_results['profit_ratio'].median() * 100.0, 'total_profit': backtesting_results['profit_abs'].sum(), 'profit': backtesting_results['profit_ratio'].sum() * 100.0, 'duration': backtesting_results['trade_duration'].mean(), } def _format_results_explanation_string(self, results_metrics: Dict) -> str: """ Return the formatted results explanation in a string """ stake_cur = self.config['stake_currency'] return ( f"{results_metrics['trade_count']:6d} trades. " f"{results_metrics['wins']}/{results_metrics['draws']}" f"/{results_metrics['losses']} Wins/Draws/Losses. " f"Avg profit {results_metrics['avg_profit']: 6.2f}%. " f"Median profit {results_metrics['median_profit']: 6.2f}%. " f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} " f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). " f"Avg duration {results_metrics['duration']:5.1f} min.").encode( locale.getpreferredencoding(), 'replace').decode('utf-8') def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer: return Optimizer( dimensions, base_estimator="ET", acq_optimizer="auto", n_initial_points=INITIAL_POINTS, acq_optimizer_kwargs={'n_jobs': cpu_count}, random_state=self.random_state, model_queue_size=SKOPT_MODEL_QUEUE_SIZE, ) def run_optimizer_parallel(self, parallel, asked, i) -> List: return parallel( delayed(wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked) def _set_random_state(self, random_state: Optional[int]) -> int: return random_state or random.randint(1, 2**16 - 1) def start(self) -> None: self.random_state = self._set_random_state( self.config.get('hyperopt_random_state', None)) logger.info(f"Using optimizer random state: {self.random_state}") self.hyperopt_table_header = -1 data, timerange = self.backtesting.load_bt_data() logger.info("Dataload complete. Calculating indicators") preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data) # Trim startup period from analyzed dataframe for pair, df in preprocessed.items(): preprocessed[pair] = trim_dataframe( df, timerange, startup_candles=self.backtesting.required_startup) min_date, max_date = get_timerange(preprocessed) logger.info( f'Hyperopting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} ' f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} ' f'({(max_date - min_date).days} days)..') dump(preprocessed, self.data_pickle_file) # We don't need exchange instance anymore while running hyperopt self.backtesting.exchange.close() self.backtesting.exchange._api = None # type: ignore self.backtesting.exchange._api_async = None # type: ignore # self.backtesting.exchange = None # type: ignore self.backtesting.pairlists = None # type: ignore self.backtesting.strategy.dp = None # type: ignore IStrategy.dp = None # type: ignore cpus = cpu_count() logger.info(f"Found {cpus} CPU cores. Let's make them scream!") config_jobs = self.config.get('hyperopt_jobs', -1) logger.info(f'Number of parallel jobs set as: {config_jobs}') self.dimensions: List[Dimension] = self.hyperopt_space() self.opt = self.get_optimizer(self.dimensions, config_jobs) if self.print_colorized: colorama_init(autoreset=True) try: with Parallel(n_jobs=config_jobs) as parallel: jobs = parallel._effective_n_jobs() logger.info( f'Effective number of parallel workers used: {jobs}') # Define progressbar if self.print_colorized: widgets = [ ' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs), ' (', progressbar.Percentage(), ')] ', progressbar.Bar(marker=progressbar.AnimatedMarker( fill='\N{FULL BLOCK}', fill_wrap=Fore.GREEN + '{}' + Fore.RESET, marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL, )), ' [', progressbar.ETA(), ', ', progressbar.Timer(), ']', ] else: widgets = [ ' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs), ' (', progressbar.Percentage(), ')] ', progressbar.Bar(marker=progressbar.AnimatedMarker( fill='\N{FULL BLOCK}', )), ' [', progressbar.ETA(), ', ', progressbar.Timer(), ']', ] with progressbar.ProgressBar(max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False, widgets=widgets) as pbar: EVALS = ceil(self.total_epochs / jobs) for i in range(EVALS): # Correct the number of epochs to be processed for the last # iteration (should not exceed self.total_epochs in total) n_rest = (i + 1) * jobs - self.total_epochs current_jobs = jobs - n_rest if n_rest > 0 else jobs asked = self.opt.ask(n_points=current_jobs) f_val = self.run_optimizer_parallel(parallel, asked, i) self.opt.tell(asked, [v['loss'] for v in f_val]) # Calculate progressbar outputs for j, val in enumerate(f_val): # Use human-friendly indexes here (starting from 1) current = i * jobs + j + 1 val['current_epoch'] = current val['is_initial_point'] = current <= INITIAL_POINTS logger.debug(f"Optimizer epoch evaluated: {val}") is_best = HyperoptTools.is_best_loss( val, self.current_best_loss) # This value is assigned here and not in the optimization method # to keep proper order in the list of results. That's because # evaluations can take different time. Here they are aligned in the # order they will be shown to the user. val['is_best'] = is_best self.print_results(val) if is_best: self.current_best_loss = val['loss'] self.epochs.append(val) # Save results after each best epoch and every 100 epochs if is_best or current % 100 == 0: self._save_results() pbar.update(current) except KeyboardInterrupt: print('User interrupted..') self._save_results() logger.info( f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} " f"saved to '{self.results_file}'.") if self.epochs: sorted_epochs = sorted(self.epochs, key=itemgetter('loss')) best_epoch = sorted_epochs[0] HyperoptTools.print_epoch_details(best_epoch, self.total_epochs, self.print_json) else: # This is printed when Ctrl+C is pressed quickly, before first epochs have # a chance to be evaluated. print("No epochs evaluated yet, no best result.")