Пример #1
0
def simple_backtest(config, contour, num_results):
    data = load_data_test(contour)
    processed = optimize.preprocess(data)
    assert isinstance(processed, dict)
    results = backtest(config['stake_amount'], processed, 1, True)
    # results :: <class 'pandas.core.frame.DataFrame'>
    assert len(results) == num_results
Пример #2
0
def simple_backtest(config, contour, num_results):
    data = load_data_test(contour)
    processed = optimize.preprocess(data)
    assert isinstance(processed, dict)
    results = backtest(config['stake_amount'], processed, 1, True)
    # results :: <class 'pandas.core.frame.DataFrame'>
    assert len(results) == num_results
Пример #3
0
def test_backtest(default_conf, mocker):
    mocker.patch.dict('freqtrade.main._CONF', default_conf)
    exchange._API = Bittrex({'key': '', 'secret': ''})

    data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
    results = backtest(default_conf['stake_amount'],
                       optimize.preprocess(data), 10, True)
    assert not results.empty
Пример #4
0
def test_backtest(default_conf, mocker):
    mocker.patch.dict('freqtrade.main._CONF', default_conf)
    exchange._API = Bittrex({'key': '', 'secret': ''})

    data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
    results = backtest(default_conf['stake_amount'], optimize.preprocess(data),
                       10, True)
    assert not results.empty
Пример #5
0
def test_backtest_1min_ticker_interval(default_conf, mocker):
    mocker.patch.dict('freqtrade.main._CONF', default_conf)
    exchange._API = Bittrex({'key': '', 'secret': ''})

    # Run a backtesting for an exiting 5min ticker_interval
    data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
    results = backtest(default_conf['stake_amount'],
                       optimize.preprocess(data), 1, True)
    assert not results.empty
Пример #6
0
def test_backtest_1min_ticker_interval(default_conf, mocker):
    mocker.patch.dict('freqtrade.main._CONF', default_conf)
    exchange._API = Bittrex({'key': '', 'secret': ''})

    # Run a backtesting for an exiting 5min ticker_interval
    data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
    results = backtest(default_conf['stake_amount'], optimize.preprocess(data),
                       1, True)
    assert not results.empty
Пример #7
0
def start(args):
    # Initialize logger
    logging.basicConfig(
        level=args.loglevel,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    )

    exchange._API = Bittrex({'key': '', 'secret': ''})

    logger.info('Using config: %s ...', args.config)
    config = misc.load_config(args.config)

    logger.info('Using ticker_interval: %s ...', args.ticker_interval)

    data = {}
    pairs = config['exchange']['pair_whitelist']
    if args.live:
        logger.info('Downloading data for all pairs in whitelist ...')
        for pair in pairs:
            data[pair] = exchange.get_ticker_history(pair, args.ticker_interval)
    else:
        logger.info('Using local backtesting data (using whitelist in given config) ...')
        data = optimize.load_data(args.datadir, pairs=pairs, ticker_interval=args.ticker_interval,
                                  refresh_pairs=args.refresh_pairs)

        logger.info('Using stake_currency: %s ...', config['stake_currency'])
        logger.info('Using stake_amount: %s ...', config['stake_amount'])

    max_open_trades = 0
    if args.realistic_simulation:
        logger.info('Using max_open_trades: %s ...', config['max_open_trades'])
        max_open_trades = config['max_open_trades']

    # Monkey patch config
    from freqtrade import main
    main._CONF = config

    preprocessed = preprocess(data)
    # Print timeframe
    min_date, max_date = get_timeframe(preprocessed)
    logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat())

    # Execute backtest and print results
    results = backtest(
        stake_amount=config['stake_amount'],
        processed=preprocessed,
        max_open_trades=max_open_trades,
        realistic=args.realistic_simulation,
        sell_profit_only=config.get('experimental', {}).get('sell_profit_only', False),
        stoploss=config.get('stoploss'),
        use_sell_signal=config.get('experimental', {}).get('use_sell_signal', False)
    )
    logger.info(
        '\n==================================== BACKTESTING REPORT ====================================\n%s',  # noqa
        generate_text_table(data, results, config['stake_currency'], args.ticker_interval)
    )
Пример #8
0
def test_processed(default_conf, mocker):
    mocker.patch.dict('freqtrade.main._CONF', default_conf)
    dict_of_tickerrows = load_data_test('raise')
    dataframes = optimize.preprocess(dict_of_tickerrows)
    dataframe = dataframes['BTC_UNITEST']
    cols = dataframe.columns
    # assert the dataframe got some of the indicator columns
    for col in ['close', 'high', 'low', 'open', 'date',
                'ema50', 'ao', 'macd', 'plus_dm']:
        assert col in cols
Пример #9
0
def test_processed(default_conf, mocker):
    mocker.patch.dict('freqtrade.main._CONF', default_conf)
    dict_of_tickerrows = load_data_test('raise')
    dataframes = optimize.preprocess(dict_of_tickerrows)
    dataframe = dataframes['BTC_UNITEST']
    cols = dataframe.columns
    # assert the dataframe got some of the indicator columns
    for col in [
            'close', 'high', 'low', 'open', 'date', 'ema50', 'ao', 'macd',
            'plus_dm'
    ]:
        assert col in cols
Пример #10
0
def start(args):
    global TOTAL_TRIES, PROCESSED, SPACE, TRIALS, _CURRENT_TRIES

    TOTAL_TRIES = args.epochs

    exchange._API = Bittrex({'key': '', 'secret': ''})

    # Initialize logger
    logging.basicConfig(
        level=args.loglevel,
        format='\n%(message)s',
    )

    logger.info('Using config: %s ...', args.config)
    config = load_config(args.config)
    pairs = config['exchange']['pair_whitelist']
    PROCESSED = optimize.preprocess(
        optimize.load_data(args.datadir,
                           pairs=pairs,
                           ticker_interval=args.ticker_interval))

    if args.mongodb:
        logger.info('Using mongodb ...')
        logger.info(
            'Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!'
        )

        db_name = 'freqtrade_hyperopt'
        TRIALS = MongoTrials('mongo://127.0.0.1:1234/{}/jobs'.format(db_name),
                             exp_key='exp1')
    else:
        logger.info('Preparing Trials..')
        signal.signal(signal.SIGINT, signal_handler)
        # read trials file if we have one
        if os.path.exists(TRIALS_FILE):
            TRIALS = read_trials()

            _CURRENT_TRIES = len(TRIALS.results)
            TOTAL_TRIES = TOTAL_TRIES + _CURRENT_TRIES
            logger.info(
                'Continuing with trials. Current: {}, Total: {}'.format(
                    _CURRENT_TRIES, TOTAL_TRIES))

    try:
        best_parameters = fmin(fn=optimizer,
                               space=SPACE,
                               algo=tpe.suggest,
                               max_evals=TOTAL_TRIES,
                               trials=TRIALS)

        results = sorted(TRIALS.results, key=itemgetter('loss'))
        best_result = results[0]['result']

    except ValueError:
        best_parameters = {}
        best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
                      'try with more epochs (param: -e).'

    # Improve best parameter logging display
    if best_parameters:
        best_parameters = space_eval(SPACE, best_parameters)

    logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
    logger.info('Best Result:\n%s', best_result)

    # Store trials result to file to resume next time
    save_trials(TRIALS)
Пример #11
0
def test_get_timeframe():
    data = preprocess(optimize.load_data(
        None, ticker_interval=1, pairs=['BTC_UNITEST']))
    min_date, max_date = get_timeframe(data)
    assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
    assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
Пример #12
0
def start(args):
    # Initialize logger
    logging.basicConfig(
        level=args.loglevel,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    )

    exchange._API = Bittrex({'key': '', 'secret': ''})

    logger.info('Using config: %s ...', args.config)
    config = misc.load_config(args.config)

    logger.info('Using ticker_interval: %s ...', args.ticker_interval)

    data = {}
    pairs = config['exchange']['pair_whitelist']
    if args.live:
        logger.info('Downloading data for all pairs in whitelist ...')
        for pair in pairs:
            data[pair] = exchange.get_ticker_history(pair,
                                                     args.ticker_interval)
    else:
        logger.info(
            'Using local backtesting data (using whitelist in given config) ...'
        )
        data = optimize.load_data(args.datadir,
                                  pairs=pairs,
                                  ticker_interval=args.ticker_interval,
                                  refresh_pairs=args.refresh_pairs)

        logger.info('Using stake_currency: %s ...', config['stake_currency'])
        logger.info('Using stake_amount: %s ...', config['stake_amount'])

    max_open_trades = 0
    if args.realistic_simulation:
        logger.info('Using max_open_trades: %s ...', config['max_open_trades'])
        max_open_trades = config['max_open_trades']

    # Monkey patch config
    from freqtrade import main
    main._CONF = config

    preprocessed = preprocess(data)
    # Print timeframe
    min_date, max_date = get_timeframe(preprocessed)
    logger.info('Measuring data from %s up to %s ...', min_date.isoformat(),
                max_date.isoformat())

    # Execute backtest and print results
    results = backtest(
        stake_amount=config['stake_amount'],
        processed=preprocessed,
        max_open_trades=max_open_trades,
        realistic=args.realistic_simulation,
        sell_profit_only=config.get('experimental',
                                    {}).get('sell_profit_only', False),
        stoploss=config.get('stoploss'),
        use_sell_signal=config.get('experimental',
                                   {}).get('use_sell_signal', False))
    logger.info(
        '\n==================================== BACKTESTING REPORT ====================================\n%s',  # noqa
        generate_text_table(data, results, config['stake_currency'],
                            args.ticker_interval))
Пример #13
0
def start(args):
    global TOTAL_TRIES, PROCESSED, SPACE, TRIALS, _CURRENT_TRIES

    TOTAL_TRIES = args.epochs

    exchange._API = Bittrex({'key': '', 'secret': ''})

    # Initialize logger
    logging.basicConfig(
        level=args.loglevel,
        format='\n%(message)s',
    )

    logger.info('Using config: %s ...', args.config)
    config = load_config(args.config)
    pairs = config['exchange']['pair_whitelist']
    PROCESSED = optimize.preprocess(optimize.load_data(
        args.datadir, pairs=pairs, ticker_interval=args.ticker_interval))

    if args.mongodb:
        logger.info('Using mongodb ...')
        logger.info('Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!')

        db_name = 'freqtrade_hyperopt'
        TRIALS = MongoTrials('mongo://127.0.0.1:1234/{}/jobs'.format(db_name), exp_key='exp1')
    else:
        logger.info('Preparing Trials..')
        signal.signal(signal.SIGINT, signal_handler)
        # read trials file if we have one
        if os.path.exists(TRIALS_FILE):
            TRIALS = read_trials()

            _CURRENT_TRIES = len(TRIALS.results)
            TOTAL_TRIES = TOTAL_TRIES + _CURRENT_TRIES
            logger.info(
                'Continuing with trials. Current: {}, Total: {}'
                .format(_CURRENT_TRIES, TOTAL_TRIES))

    try:
        best_parameters = fmin(
            fn=optimizer,
            space=SPACE,
            algo=tpe.suggest,
            max_evals=TOTAL_TRIES,
            trials=TRIALS
        )

        results = sorted(TRIALS.results, key=itemgetter('loss'))
        best_result = results[0]['result']

    except ValueError:
        best_parameters = {}
        best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
                      'try with more epochs (param: -e).'

    # Improve best parameter logging display
    if best_parameters:
        best_parameters = space_eval(SPACE, best_parameters)

    logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
    logger.info('Best Result:\n%s', best_result)

    # Store trials result to file to resume next time
    save_trials(TRIALS)
Пример #14
0
def test_get_timeframe():
    data = preprocess(
        optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST']))
    min_date, max_date = get_timeframe(data)
    assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
    assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'