argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/kmeans_data.txt") #sparse data #train_mat = csr_matrix(train_mat) # creating Standard Scaler object ss = StandardScaler(with_mean=True, with_std=True) # fitting the training matrix on Standard Scaler object ss.fit(train_mat) #attributes print("Mean: ") print(ss.mean_) print("Var: ") print(ss.var_) #transform trans_mat = ss.transform(train_mat) print("transformed data::") print(trans_mat)
from scipy.sparse import csr_matrix from scipy import sparse desc = "Testing StandardScaler inverse_transform(), without fit. " #sparse csr_matrix # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") sparseMatrix = sparse.csr_matrix(train_mat) # creating Standard Scaler object ss = StandardScaler(True, False, True, False, 0) try: trans_mat = ss.transform(train_mat) inverse_tran_mat = ss.inverse_transform(trans_mat) print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
from frovedis.mllib.preprocessing import StandardScaler desc = "Testing StandardScaler transform(), with fit. " #on dense data(numpy.array) # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") # creating Standard Scaler object ss = StandardScaler(True, True, True, False, 0) # fitting the training matrix on Standard Scaler object ss.fit(train_mat) try: trans_mat = ss.transform(train_mat) print(desc, "Passed") except: print(desc, "Failed") FrovedisServer.shut_down()
from frovedis.exrpc.server import FrovedisServer from frovedis.mllib.preprocessing import StandardScaler desc = "Testing for accessing 'var_' attribute after calling fit() on Dense data(numpy.array) " # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") # creating Standard Scaler object ss = StandardScaler(True, True, True, False, 0) ss.fit(train_mat) try: ss.var_ print(desc, "Passed") except: print(desc, "Failed") FrovedisServer.shut_down()
import sys import numpy as np from frovedis.exrpc.server import FrovedisServer from frovedis.mllib.preprocessing import StandardScaler desc = "Testing for accessing 'mean_' attribute without calling fit() on Dense data(numpy.array)" # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") # creating Standard Scaler object ss = StandardScaler(True, True, True, False, 0) try: ss.mean_ print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
desc = " Test for explicitly setting 'var_' attribute " #sparse csr_matrix # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") sparseMatrix = sparse.csr_matrix(train_mat) # creating Standard Scaler object ss = StandardScaler(True, False, True, False, 0) # fitting the training matrix on Standard Scaler object ss.fit(sparseMatrix) try: ss.var_ = [32.75, 3.5] print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
from frovedis.exrpc.server import FrovedisServer from frovedis.mllib.preprocessing import StandardScaler from frovedis.matrix.dense import FrovedisColmajorMatrix desc = "Testing StandardScaler transform(), without fit. " #sparse csr_matrix # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") mat = FrovedisColmajorMatrix(train_mat) # creating Standard Scaler object ss = StandardScaler(True, True, True, False, 0) try: trans_mat = ss.transform(mat) print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
from frovedis.exrpc.server import FrovedisServer from frovedis.mllib.preprocessing import StandardScaler desc = "Test with_mean and with_std is None" # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print ('Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")') quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") try: ss = StandardScaler(True, None, None, False) ss.fit(train_mat) trans_mat = ss.transform(train_mat) inverse_trans_mat = ss.inverse_transform(trans_mat) print(ss.mean_) print(ss.var_) print(desc, "Passed") except: print(desc, "Failed") FrovedisServer.shut_down()
from scipy.sparse import csr_matrix from scipy import sparse desc = "Testing StandardScaler transform(), with fit, with_mean = true " #sparse csr_matrix # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") sparseMatrix = sparse.csr_matrix(train_mat) # creating Standard Scaler object ss = StandardScaler(True, True, True, False, 0) try: ss.fit(sparseMatrix) trans_mat = ss.transform(train_mat) print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
from frovedis.mllib.preprocessing import StandardScaler from scipy.sparse import csr_matrix from scipy import sparse desc = "Testing for accessing 'var_' attribute after calling fit(), with_mean = true " # Sparse csr_matrix # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") sparseMatrix = sparse.csr_matrix(train_mat) try: ss = StandardScaler(True, True, True, False, 0) ss.fit(sparseMatrix) ss.var_ print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
from scipy import sparse desc = " Test for explicitly setting 'mean' attribute " #sparse csr_matrix # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print ('Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")') quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") sparseMatrix = sparse.csr_matrix(train_mat) # creating Standard Scaler object ss = StandardScaler(True, False, True, False, 0) # fitting the training matrix on Standard Scaler object ss.fit(sparseMatrix) try: ss.mean_ = [5.5, 2.0] print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
from frovedis.mllib.preprocessing import StandardScaler desc = " Test for explicitly setting 'mean' attribute " # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") # creating Standard Scaler object ss = StandardScaler(True, True, True, False, 0) # fitting the training matrix on Standard Scaler object ss.fit(train_mat) try: ss.mean_ = [5.5, 2.0] print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()
from frovedis.exrpc.server import FrovedisServer from frovedis.mllib.preprocessing import StandardScaler desc = " Testing for explicitly setting 'variance' attribute on Dense data(numpy.array) " # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print ('Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")') quit() FrovedisServer.initialize(argvs[1]) #dense data train_mat = np.loadtxt("./input/gmm_data.txt") # creating Standard Scaler object ss = StandardScaler(True, True, True, False, 0) # fitting the training matrix on Standard Scaler object ss.fit(train_mat) ss.transform(train_mat) try: ss.var_ = [32.75, 3.5] print(desc, "Failed") except: print(desc, "Passed") FrovedisServer.shut_down()