Пример #1
0
    parser.add_argument("--input", required=True, help="JSON file produced by the model")
    parser.add_argument("--output", required=True, help="output directory")
    parser.add_argument("--dataset", help="name of the dataset", default="coco_2017_val")
    parser.add_argument("--conf-threshold", default=0.5, type=float, help="confidence threshold")
    args = parser.parse_args()

    logger = setup_logger()

    with PathManager.open(args.input, "r") as f:
        predictions = json.load(f)

    pred_by_image = defaultdict(list)
    for p in predictions:
        pred_by_image[p["image_id"]].append(p)

    dicts = list(DatasetCatalog.get(args.dataset))
    metadata = MetadataCatalog.get(args.dataset)
    if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):

        def dataset_id_map(ds_id):
            return metadata.thing_dataset_id_to_contiguous_id[ds_id]

    elif "lvis" in args.dataset:
        # LVIS results are in the same format as COCO results, but have a different
        # mapping from dataset category id to contiguous category id in [0, #categories - 1]
        def dataset_id_map(ds_id):
            return ds_id - 1

    else:
        raise ValueError("Unsupported dataset: {}".format(args.dataset))
Пример #2
0
            for per_image in batch:
                # Pytorch tensor is in (C, H, W) format
                img = per_image["image"].permute(1, 2, 0)
                if cfg.INPUT.FORMAT == "BGR":
                    img = img[:, :, [2, 1, 0]]
                else:
                    img = np.asarray(
                        Image.fromarray(img,
                                        mode=cfg.INPUT.FORMAT).convert("RGB"))

                visualizer = Visualizer(img, metadata=metadata, scale=scale)
                target_fields = per_image["instances"].get_fields()
                labels = [
                    metadata.thing_classes[i]
                    for i in target_fields["gt_classes"]
                ]
                vis = visualizer.overlay_instances(
                    labels=labels,
                    boxes=target_fields.get("gt_boxes", None),
                )
                output(vis, str(per_image["image_id"]) + ".jpg")
    else:
        dicts = list(
            chain.from_iterable(
                [DatasetCatalog.get(k) for k in cfg.DATASETS.TRAIN]))
        for dic in dicts:
            img = utils.read_image(dic["file_name"], "RGB")
            visualizer = Visualizer(img, metadata=metadata, scale=scale)
            vis = visualizer.draw_dataset_dict(dic)
            output(vis, os.path.basename(dic["file_name"]))